cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107999 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

This page as a plain text file.
%I A107999 #26 Aug 11 2025 07:33:45
%S A107999 37,101,141,189,197,269,325,333,349,373,381,389,405,485,557,573,677,
%T A107999 701,709,757,781,813,829,877,885,901,909,925,933,973,997,1053,1149,
%U A107999 1157,1173,1213,1269,1293,1301,1325,1389,1405,1421,1445,1485,1605,1613,1701,1717
%N A107999 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.
%D A107999 C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.
%H A107999 A. Cayley, <a href="https://gdz.sub.uni-goettingen.de/id/PPN243919689_0053">Note sur l'équation x^2 - D*y^2 = +-4, D=5 (mod. 8)</a>, J. Reine Angew. Math. 53 (1857) 369-371.
%H A107999 S. R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]
%H A107999 N. Ishii, P. Kaplan and K. S. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa54/aa5446.pdf">On Eisenstein's problem</a>, Acta Arith. 54 (1990) 323-345.
%Y A107999 Cf. A048941, A048942, A107996, A108160.
%K A107999 nonn
%O A107999 1,1
%A A107999 _Steven Finch_, Jun 13 2005
%E A107999 More terms from _Jinyuan Wang_, Sep 08 2021