cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108056 Numbers of the form (7^i)*(13^j).

Original entry on oeis.org

1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=7));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A108056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,7)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020

Extensions

More terms from Amiram Eldar, Sep 23 2020