This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108088 #20 Feb 03 2017 14:56:41 %S A108088 6,5,5,6,7,9,5,4,2,4,1,8,7,9,8,4,7,1,5,4,3,8,7,1,2,3,0,7,3,0,8,1,1,2, %T A108088 8,3,3,9,9,2,8,2,3,3,2,8,7,0,4,6,2,0,2,8,0,5,3,6,8,6,1,5,8,7,3,4,1,9, %U A108088 7,1,6,5,7,6,6,3,1,0,5,8,9,0,6,5,8,5,0,9,5 %N A108088 Decimal expansion of 1/(1+1/(1+2/(1+3/(1+4/(1+5/(1+...)))))). %C A108088 Term of Ramanujan's formula (see A059444 and A060196). %D A108088 S. R. Finch, "Mathematical Constants", Cambridge, pp. 423-428. %H A108088 G. C. Greubel, <a href="/A108088/b108088.txt">Table of n, a(n) for n = 0..5000</a> %F A108088 Equals sqrt(Pi*e/2)*erfc(1/sqrt(2)), where erfc is the complementary error function. - _Daniel Forgues_, Apr 14 2011 %F A108088 Also equals Integral_{-infinity..infinity} (1/sqrt(2*Pi))*exp(-x^2/2)/(1+x^2) dx, where the integrand is normal PDF times Cauchy PDF. - _Jean-François Alcover_, Apr 28 2015 %e A108088 0.6556795424187984715438712307308112833992823328704... %t A108088 RealDigits[Sqrt[Pi*E/2]*Erfc[1/Sqrt[2]], 10, 111][[1]] %o A108088 (PARI) sqrt(Pi*exp(1)/2)*erfc(1/sqrt(2)) \\ _G. C. Greubel_, Feb 03 2017 %Y A108088 Cf. A111129. %K A108088 nonn,cons %O A108088 0,1 %A A108088 _Philippe Deléham_, Jun 21 2005