This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108090 #29 Apr 22 2025 03:59:39 %S A108090 1,11,13,121,143,169,1331,1573,1859,2197,14641,17303,20449,24167, %T A108090 28561,161051,190333,224939,265837,314171,371293,1771561,2093663, %U A108090 2474329,2924207,3455881,4084223,4826809,19487171,23030293,27217619 %N A108090 Numbers of the form (11^i)*(13^j). %H A108090 Reinhard Zumkeller, <a href="/A108090/b108090.txt">Table of n, a(n) for n = 1..10000</a> %F A108090 Sum_{n>=1} 1/a(n) = (11*13)/((11-1)*(13-1)) = 143/120. - _Amiram Eldar_, Sep 23 2020 %F A108090 a(n) ~ exp(sqrt(2*log(11)*log(13)*n)) / sqrt(143). - _Vaclav Kotesovec_, Sep 23 2020 %t A108090 mx = 3*10^7; Sort@ Flatten@ Table[ 11^i*13^j, {i, 0, Log[11, mx]}, {j, 0, Log[13, mx/11^i]}] (* _Robert G. Wilson v_, Aug 17 2012 *) %t A108090 fQ[n_]:=PowerMod[143, n, n] == 0; Select[Range[2 10^7], fQ] (* _Vincenzo Librandi_, Jun 27 2016 *) %o A108090 (Haskell) %o A108090 import Data.Set (singleton, deleteFindMin, insert) %o A108090 a108090 n = a108090_list !! (n-1) %o A108090 a108090_list = f $ singleton (1,0,0) where %o A108090 f s = y : f (insert (11 * y, i + 1, j) $ insert (13 * y, i, j + 1) s') %o A108090 where ((y, i, j), s') = deleteFindMin s %o A108090 -- _Reinhard Zumkeller_, May 15 2015 %o A108090 (Magma) [n: n in [1..10^7] | PrimeDivisors(n) subset [11, 13]]; // _Vincenzo Librandi_, Jun 27 2016 %o A108090 (PARI) list(lim)=my(v=List(),t); for(j=0,logint(lim\=1,13), t=13^j; while(t<=lim, listput(v,t); t*=11)); Set(v) \\ _Charles R Greathouse IV_, Aug 29 2016 %o A108090 (Python) %o A108090 from sympy import integer_log %o A108090 def A108090(n): %o A108090 def bisection(f,kmin=0,kmax=1): %o A108090 while f(kmax) > kmax: kmax <<= 1 %o A108090 kmin = kmax >> 1 %o A108090 while kmax-kmin > 1: %o A108090 kmid = kmax+kmin>>1 %o A108090 if f(kmid) <= kmid: %o A108090 kmax = kmid %o A108090 else: %o A108090 kmin = kmid %o A108090 return kmax %o A108090 def f(x): return n+x-sum(integer_log(x//13**i,11)[0]+1 for i in range(integer_log(x,13)[0]+1)) %o A108090 return bisection(f,n,n) # _Chai Wah Wu_, Mar 25 2025 %Y A108090 Cf. A003586, A003592, A003593, A003591, A003594, A003595, A003596, A003597, A003598, A003599, A107326, A107364, A107466, A108056. %K A108090 nonn,easy %O A108090 1,2 %A A108090 Douglas Winston (douglas.winston(AT)srupc.com), Jun 03 2005