cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108093 Coefficients of series whose 24th power is the theta series of the Leech lattice (see A008408).

This page as a plain text file.
%I A108093 #27 Feb 16 2025 08:32:58
%S A108093 1,0,8190,698880,-754790400,-131455134720,90235527782400,
%T A108093 25034722952279040,-11631379080860106750,-4740180695347850188800,
%U A108093 1500620323887236434821120,888527739621938585682240000,-181995668700704689414022799360,-164466129435036361896228722795520
%N A108093 Coefficients of series whose 24th power is the theta series of the Leech lattice (see A008408).
%D A108093 N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
%H A108093 Seiichi Manyama, <a href="/A108093/b108093.txt">Table of n, a(n) for n = 0..378</a>
%H A108093 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://dx.doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%H A108093 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006.
%H A108093 N. J. A. Sloane, <a href="http://neilsloane.com/doc/g4g7.pdf">Seven Staggering Sequences</a>.
%H A108093 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LeechLattice.html">Leech Lattice</a>
%e A108093 More precisely, the theta series of the Leech lattice (A008408) begins 1 + 196560*q^4 + 16773120*q^6 + 398034000*q^8 + 4629381120*q^10 + ... and the 24th root of this is 1 + 8190*q^4 + 698880*q^6 - 754790400*q^8 - 131455134720*q^10 + ...
%t A108093 terms = 14; s = (-45/16 EllipticTheta[2, 0, q]^8 EllipticTheta[3, 0, q]^8 EllipticTheta[4, 0, q]^8 + 1/8 (EllipticTheta[2, 0, q]^8 + EllipticTheta[3, 0, q]^8 + EllipticTheta[4, 0, q]^8)^3)^(1/24) + O[q]^(2 terms); (* _Jean-François Alcover_, Jul 07 2017, from LatticeData(Leech) *)
%Y A108093 Cf. A008408.
%K A108093 sign
%O A108093 0,3
%A A108093 _N. J. A. Sloane_ and _Michael Somos_, Jun 06 2005