A108126 Maximal number of squares of side 1 in an ellipse of semiaxes n,2n.
3, 17, 43, 83, 137, 203, 279, 369, 471, 587, 715, 857, 1011, 1175, 1351, 1541, 1743, 1961, 2191, 2429, 2683, 2949, 3227, 3523, 3829, 4137, 4469, 4809, 5167, 5539, 5913, 6295, 6701, 7127, 7555, 7999, 8449, 8909, 9395, 9889, 10395, 10915
Offset: 1
Examples
a(1)=3 since you cannot pack more than 3 unit-side squares in an ellipse of semiaxes 1,2
Crossrefs
Similar to A125228.
Programs
-
Mathematica
f[n_] := 2 Sum[IntegerPart[2 Sqrt[4 n^2 - (h - 1/2)^2]], {h, 2, 2 n}] + IntegerPart[2 Sqrt[4 n^2 - 1/4]]; Array[f,42]