cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108160 Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

This page as a plain text file.
%I A108160 #29 Aug 11 2025 07:34:27
%S A108160 37,101,141,197,269,349,373,381,389,485,557,573,677,701,709,757,781,
%T A108160 813,829,877,885,901,933,973,997,1149,1157,1173,1213,1293,1301,1389,
%U A108160 1405,1605,1613,1717,1757,1765,1861,1885,1893,1901,1909,1949,1973,2069,2077,2093
%N A108160 Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.
%D A108160 C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.
%H A108160 Florian Breuer and James Punch, <a href="https://arxiv.org/abs/2507.06579">Quadratic units and cubic fields</a>, arXiv:2507.06579 [math.NT], 2025. See p. 1.
%H A108160 Arthur Cayley, <a href="https://gdz.sub.uni-goettingen.de/id/PPN243919689_0053">Note sur l'équation x^2 - D*y^2 = +-4, D=5 (mod 8)</a>, J. Reine Angew. Math. 53 (1857) 369-371.
%H A108160 Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]
%H A108160 Noburo Ishii, Pierre Kaplan and Kenneth S. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa54/aa5446.pdf">On Eisenstein's problem</a>, Acta Arith. 54 (1990) 323-345.
%Y A108160 Cf. A048941, A048942, A107997, A107999.
%K A108160 nonn
%O A108160 1,1
%A A108160 _Steven Finch_, Jun 13 2005
%E A108160 More terms from _Jinyuan Wang_, Sep 08 2021