This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108196 #29 Dec 07 2019 12:18:24 %S A108196 -1,-3,0,21,55,0,-377,-987,0,6765,17711,0,-121393,-317811,0,2178309, %T A108196 5702887,0,-39088169,-102334155,0,701408733,1836311903,0,-12586269025, %U A108196 -32951280099,0,225851433717,591286729879,0,-4052739537881 %N A108196 Expansion of (x-1)*(x+1) / (8*x^2 + 1 - 3*x + x^4 - 3*x^3). %C A108196 Terms (or their respective absolute values) appear to be contained in A000045. %C A108196 Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 3, P2 = 6, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Mar 25 2014 %H A108196 Vincenzo Librandi, <a href="/A108196/b108196.txt">Table of n, a(n) for n = 0..1000</a> %H A108196 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-8,3,-1). %H A108196 Peter Bala, <a href="/A100047/a100047.pdf">Linear divisibility sequences and Chebyshev polynomials</a> %H A108196 H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277. %H A108196 H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.pdf">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume %F A108196 a(0)=-1, a(1)=-3, a(2)=0, a(3)=21, a(n) = 3*a(n-1) - 8*a(n-2) + 3*a(n-3) - a(n-4). - _Harvey P. Dale_, Dec 25 2012 %F A108196 From _Peter Bala_, Mar 25 2014: (Start) %F A108196 The following formulas assume an offset of 1. %F A108196 a(n) = (-1)*A001906(n)*A010892(n-1). Equivalently, a(n) = (-1)*U(n-1,1/2)*U(n-1,3/2), where U(n,x) denotes the Chebyshev polynomial of the second kind. %F A108196 a(n) = (-1)*bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -3/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind. %F A108196 The ordinary generating function is the Hadamard product of -x/(1 - x + x^2) and x/(1 - 3*x + x^2). %F A108196 See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End) %p A108196 seriestolist(series((x-1)*(x+1)/(8*x^2+1-3*x+x^4-3*x^3), x=0,40)); %t A108196 CoefficientList[Series[(x-1)(x+1)/(8x^2+1-3x+x^4-3x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,-8,3,-1},{-1,-3,0,21},40] (* _Harvey P. Dale_, Dec 25 2012 *) %o A108196 (Sage) [lucas_number1(n,3,1)*lucas_number1(n,1,1)*(-1) for n in range(1,33)] # _Zerinvary Lajos_, Jul 06 2008 %o A108196 (PARI) x='x+O('x^50); Vec((x-1)*(x+1)/(8*x^2 +1 -3*x + x^4 - 3*x^3)) \\ _G. C. Greubel_, Aug 08 2017 %Y A108196 Cf. A000045, A100047. %K A108196 easy,sign %O A108196 0,2 %A A108196 _Creighton Dement_, Jul 23 2005