cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108223 a(n) = sigma_{2n}(n^2)/sigma_n(n^2), where sigma_n(m) = Sum_{d|m} d^n.

This page as a plain text file.
%I A108223 #23 May 18 2024 14:52:58
%S A108223 1,13,703,61681,9762501,2140365529,678222249307,280379743338241,
%T A108223 150087010086914941,99902428887422922553,81402749386554449442711,
%U A108223 79477293980103609858493681,91733330193268313783293023757,123469159731637675342948027295569,191751045863140709562160603031808243
%N A108223 a(n) = sigma_{2n}(n^2)/sigma_n(n^2), where sigma_n(m) = Sum_{d|m} d^n.
%F A108223 a(n) = Product_{p=primes} (Sum_{k=0..2*b(n, p)} p^(n*k)*(-1)^k), where p^b(n, p) is the highest power of p dividing n.
%F A108223 From _Seiichi Manyama_, May 18 2024: (Start)
%F A108223 a(n) = Sum_{1 <= x_1, x_2, ... , x_n <= n} ( n/gcd(x_1, x_2, ... , x_n, n) )^n.
%F A108223 a(n) = Sum_{d|n} mu(n/d) * (n/d)^n * sigma_{2*n}(d). (End)
%e A108223 sigma_4(4)/sigma_2(4) =
%e A108223 (1 + 2^4 + 4^4)/(1 + 2^2 + 4^2) = 13.
%t A108223 Table[DivisorSigma[2n, n^2]/DivisorSigma[n, n^2], {n, 10}] (* _Ryan Propper_, Apr 03 2007 *)
%o A108223 (PARI) a(n) = sigma(n^2, 2*n)/sigma(n^2, n); \\ _Michel Marcus_, Sep 06 2019
%Y A108223 Cf. A062755.
%Y A108223 Cf. A057660, A084218, A084220, A372966.
%K A108223 nonn
%O A108223 1,2
%A A108223 _Leroy Quet_, Jun 28 2005
%E A108223 More terms from _Ryan Propper_, Apr 03 2007
%E A108223 More terms from _Michel Marcus_, Sep 06 2019