cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108242 a(n) is the number of coverings of 1..n by cyclic words of length 3, such that each value from 1 to n appears precisely 3 times. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,1,2,2,2,...,n,n,n}. Repeats of words are allowed in a given covering.

This page as a plain text file.
%I A108242 #12 Dec 25 2017 03:46:14
%S A108242 1,1,2,16,256,7184,311944,19191448,1584972224,169021538944,
%T A108242 22595033625856,3699135711988736,727774085471066752,
%U A108242 169399730544125355136,46039989792346454771456,14447317177670702438831104,5183889091511674280049885184,2108937872584292649560886222848
%N A108242 a(n) is the number of coverings of 1..n by cyclic words of length 3, such that each value from 1 to n appears precisely 3 times. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,1,2,2,2,...,n,n,n}. Repeats of words are allowed in a given covering.
%C A108242 The asymptotic growth of the coefficients is a(n) ~ C (3/2)^n (n!)^2 /n with C approx 0.277.
%C A108242 In closed form, C = sqrt(3)/(2*Pi) = 0.27566444771089602475566324915648472... . - _Vaclav Kotesovec_, Feb 28 2016
%H A108242 Vaclav Kotesovec, <a href="/A108242/b108242.txt">Table of n, a(n) for n = 0..240</a>
%F A108242 Exponential generating function satisfies the linear differential equation: {(6 + 499*t^6 + 270*t^4 + 408*t^8 - 162*t^11 - 558*t^9 - 12*t - 96*t^3 + 66*t^2 - 654*t^7 + 60*t^12 + 154*t^10 - 342*t^5 + 9*t^14)*F(t) + (81*t^10 + 72*t^4 + 198*t^6 + 216*t^8 + 9*t^2)*(d^2/dt^2)F(t) + (-474*t^6 - 252*t^10 - 6 + 126*t^3 + 594*t^7 - 66*t^2 + 324*t^9 - 54*t^12 - 420*t^8 + 18*t - 264*t^4 + 378*t^5)*(d/dt)F(t), F(0) = 1}
%F A108242 The a(n) satisfy the recurrence: {a(0) = 1, a(1) = 1, ( - 20779902*n^7 - 134970693*n^6 - 1971620508*n^4 - 2248389*n^8 - 3*n^12 - 4459328640*n - 4242044664*n^3 - 5794678656*n^2 - 618210450*n^5 - 234*n^11 - 1437004800 - 8151*n^10 - 167310*n^9)*a(n) + ( - 7295434560*n - 4550515200 - 914850*n^7 - 5131406304*n^2 - 545289740*n^4 - 2088314700*n^3 - 11400627*n^6 - 95574465*n^5 - 1425*n^9 - 47310*n^8 - 19*n^10)*a(n + 2) + (711103032*n^4 + 8622028800 + 13032306*n^6 + 116250876*n^5 + 2944635984*n^3 + 12385923840*n + 7897844736*n^2 + 18*n^10 + 1404*n^9 + 48708*n^8 + 989496*n^7)*a(n + 3) + ( - 915980400*n - 898128000 - 3060*n^7 - 90090*n^6 - 1499400*n^5 - 15424605*n^4 - 100395540*n^3 - 403611660*n^2 - 45*n^8)*a(n + 4) + (2882376*n^5 + 890994600*n^2 + 2137510944*n + 30916662*n^4 + 210700728*n^3 + 166740*n^6 + 5472*n^7 + 78*n^8 + 2227357440)*a(n + 5) + ( - 1050477120 - 60979*n^6 - 1088733*n^5 - 12105088*n^4 - 27*n^8 - 85853091*n^3 - 379422466*n^2 - 955621272*n - 1944*n^7)*a(n + 6) + (57398400*n + 114*n^6 + 91238400 + 161430*n^4 + 2078100*n^3 + 14985456*n^2 + 6660*n^5)*a(n + 7) + ( - 1225827*n^3 - 58806000 - 63*n^6 - 9078336*n^2 - 92961*n^4 - 3753*n^5 - 35812260*n)*a(n + 8) + (571080*n + 1504800 + 5100*n^3 + 120*n^4 + 81060*n^2)*a(n + 9) + ( - 233178*n - 635976 - 32079*n^2 - 1962*n^3 - 45*n^4)*a(n + 10) + (1116*n + 48*n^2 + 6480)*a(n + 11) + ( - 225*n - 9*n^2 - 1410)*a(n + 12) + 6*a(n + 13) = 0,
%F A108242 with a(2) = 2, a(3) = 16, a(4) = 256, a(5) = 7184, a(6) = 311944, a(7) = 19191448, a(8) = 1584972224, a(9) = 169021538944, a(10) = 22595033625856, a(11) = 3699135711988736, a(12) = 727774085471066752}
%e A108242 a(2)=2 because the two cyclic word coverings are {112, 221} and {111, 222}
%e A108242 a(3)=16: {111 222 333} {111 223 233} {112 122 333} {112 133 223} {113 122 233} {113 123 223} {113 132 223} {112 132 233} {113 133 222} {122 123 133} {122 132 133} {112 123 233} {123 123 123} {123 132 123} {123 132 132} {132 132 132}
%t A108242 RecurrenceTable[{-(-10 + n) (-9 + n) (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (25 - 243 n + 243 n^2) a[-11 + n] + 90 (-9 + n) (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-10 + n] - 6 (-8 + n) (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (52 - 270 n + 243 n^2) a[-9 + n] + 6 (-7 + n) (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-40 + 1240 n - 1458 n^2 + 243 n^3) a[-8 + n] - (-6 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-917 - 3537 n + 3159 n^2) a[-7 + n] + 6 (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-711 + 4555 n - 4941 n^2 + 972 n^3) a[-6 + n] - 9 (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-110 - 3557 n + 5128 n^2 - 1944 n^3 + 243 n^4) a[-5 + n] + 6 (-3 + n) (-2 + n) (-1 + n) (-508 + 4580 n - 5022 n^2 + 1215 n^3) a[-4 + n] - 6 (-2 + n) (-1 + n) (692 - 6471 n + 9309 n^2 - 4374 n^3 + 729 n^4) a[-3 + n] + 6 (-1 + n) (-92 + 2798 n - 3726 n^2 + 1215 n^3) a[-2 + n] - 3 (482 - 2451 n + 4206 n^2 - 2916 n^3 + 729 n^4) a[-1 + n] + 6 (511 - 729 n + 243 n^2) a[n] == 0, a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 16, a[4] == 256, a[5] == 7184, a[6] == 311944, a[7] == 19191448, a[8] == 1584972224, a[9] == 169021538944, a[10] == 22595033625856}, a, {n, 0, 20}] (* _Vaclav Kotesovec_, Feb 28 2016 *)
%Y A108242 Cf. A052502, A110105, A110106, A110104.
%K A108242 nonn
%O A108242 0,3
%A A108242 _Marni Mishna_, Jun 17 2005
%E A108242 More terms from _Vaclav Kotesovec_, Feb 28 2016