cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108281 Numbers that are both triangular and pentagonal of the second kind.

This page as a plain text file.
%I A108281 #17 Jul 03 2023 08:05:48
%S A108281 0,15,2926,567645,110120220,21362755051,4144264359690,803965923024825,
%T A108281 155965244802456376,30256453525753512135,5869596018751378897830,
%U A108281 1138671371184241752666901,220896376413724148638480980
%N A108281 Numbers that are both triangular and pentagonal of the second kind.
%D A108281 L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 22.
%H A108281 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (195, -195, 1).
%F A108281 a(n) = 194 * a(n-1) - a(n-2) + 16.
%F A108281 G.f.: x^2 *(15 + x) / ((1 - x) * (1 - 194*x + x^2)).
%F A108281 a(n) = A076139(2*n - 2) = A014979(2 - n).
%e A108281 15*x^2 + 2926*x^3 + 567645*x^4 + 110120220*x^5 + 21362755051*x^6 + ...
%e A108281 a(4) = 567645 which is 1065*(1065-1)/2 = 615*(3*615+1)/2.
%o A108281 (PARI) {a(n) = polchebyshev( 2*n - 2, 2, 7) / 14 + polchebyshev( 2*n - 2, 1, 7) / 84 - 1 / 12} /* _Michael Somos_, Jun 16 2011 */
%Y A108281 Cf. A076139, A014979.
%K A108281 nonn
%O A108281 1,2
%A A108281 _Michael Somos_, May 30 2005