cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108283 Triangle read by rows, generated from (..., 3, 2, 1).

This page as a plain text file.
%I A108283 #20 Feb 07 2022 08:17:06
%S A108283 1,1,3,1,5,6,1,7,17,10,1,9,34,49,15,1,11,57,142,129,21,1,13,86,313,
%T A108283 547,321,28,1,15,121,586,1593,2005,769,36,1,17,162,985,3711,7737,7108,
%U A108283 1793,45,1,19,209,1534,7465,22461,36409,24604,4097,55,1,21,262,2257,13539,54121,131836,167481,83653,9217,66
%N A108283 Triangle read by rows, generated from (..., 3, 2, 1).
%C A108283 Inverse binomial transforms of each column form the rows of A108284. Rightmost diagonal = triangular numbers, (A000217); while diagonals going to the left from (1, 3, 6, ...) are A000337 starting with 1: (1, 5, 17, 49, ...); A014915: (1, 7, 34, 142, ...); A014916: (1, 9, 57, ...); A014917: (1, 11, 86, ...).
%F A108283 n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.
%F A108283 T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - _Jean-François Alcover_, Sep 13 2016
%e A108283 4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.
%e A108283 First few rows of the triangle:
%e A108283   1;
%e A108283   1,  3;
%e A108283   1,  5,  6;
%e A108283   1,  7, 17,  10;
%e A108283   1,  9, 34,  49,  15;
%e A108283   1, 11, 57, 142, 129, 21;
%e A108283   ...
%p A108283 A108283 := proc(n,k)
%p A108283     local x ;
%p A108283     x := n-k+1 ;
%p A108283     add( i*x^(i-1),i=1..k) ;
%p A108283 end proc:
%p A108283 seq(seq( A108283(n,k),k=1..n),n=1..10) ; # _R. J. Mathar_, Sep 14 2016
%t A108283 T[_, 1] := 1; T[n_, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 13 2016 *)
%Y A108283 Cf. A059045, A108284, A000217, A000337, A014915, A014916, A014917.
%K A108283 nonn,tabl,easy
%O A108283 1,3
%A A108283 _Gary W. Adamson_, May 30 2005
%E A108283 More terms from _Jean-François Alcover_, Sep 13 2016