cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108319 Numbers of the form (2^i)*(3^j)*(7^k), with i, j, k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 27, 28, 32, 36, 42, 48, 49, 54, 56, 63, 64, 72, 81, 84, 96, 98, 108, 112, 126, 128, 144, 147, 162, 168, 189, 192, 196, 216, 224, 243, 252, 256, 288, 294, 324, 336, 343, 378, 384, 392, 432, 441, 448, 486, 504, 512, 567
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 30 2005

Keywords

Comments

Numbers m | 42^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019
Sum_{n>=1} 1/a(n) = (2*3*7)/((2-1)*(3-1)*(7-1)) = 7/2. - Amiram Eldar, Sep 24 2020

Crossrefs

Programs

  • Mathematica
    With[{n = 567}, Sort@ Flatten@ Table[2^i * 3^j * 7^k, {i, 0, Log2@ n}, {j, 0, Log[3, n/2^i]}, {k, 0, Log[7, n/(2^i*3^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
  • PARI
    list(lim)=my(v=List(), s, t); for(i=0, logint(lim\=1, 7), t=7^i; for(j=0, logint(lim\t, 3), s=t*3^j; while(s<=lim, listput(v, s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Nov 20 2024

Formula

a(n) ~ exp((6*log(2)*log(3)*log(7)*n)^(1/3)) / sqrt(42). - Vaclav Kotesovec, Sep 23 2020