cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108367 L(n,-n), where L is defined as in A108299.

This page as a plain text file.
%I A108367 #20 Feb 16 2025 08:32:58
%S A108367 1,-2,5,-29,265,-3191,47321,-832040,16908641,-389806471,10049731549,
%T A108367 -286482047279,8946795882025,-303762892305614,11140078609864049,
%U A108367 -438857301101610929,18482410314337295233,-828657053219851847135,39406519321199703822581,-1981132660316876165976260
%N A108367 L(n,-n), where L is defined as in A108299.
%C A108367 A108366(n) = L(n,n).
%H A108367 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Morgan-VoycePolynomials.html">Morgan-Voyce polynomials</a>
%F A108367 a(n) = (-1)^n * Product_{k=1..n} (n + 2*cos((2*k-1)*Pi/(2*n+1))) with Pi = 3.14...
%F A108367 a(n) = Sum_{k=0..n} (-1)^k*binomial(n+k,2*k)*(n+2)^k = b(n,-n-2), where b(n,x) are the Morgan-Voyce polynomials of A085478. - _Peter Bala_, May 01 2012
%o A108367 (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+k,2*k)*(n+2)^k); \\ _Jinyuan Wang_, Feb 25 2020
%Y A108367 Cf. A000312, A085478, A108299, A108366.
%K A108367 sign
%O A108367 0,2
%A A108367 _Reinhard Zumkeller_, Jun 01 2005
%E A108367 More terms from _Jinyuan Wang_, Feb 25 2020