A108387 Doubly-transmutable primes: primes such that simultaneously exchanging pairwise all occurrences of any two disjoint pairs of distinct digits results in a prime.
113719, 131797, 139177, 139397, 193937, 313979, 317179, 317399, 331937, 371719, 739391, 779173, 793711, 793931, 797131, 917173, 971713, 971933, 979313, 997391, 1111793, 3333971, 7777139, 9999317, 13973731, 31791913, 79319197, 97137379
Offset: 1
Examples
a(0) = 113719 as this is the first prime having four distinct digits and such that all three simultaneous pairwise exchanges of all distinct digits as shown below 'transmutate' the original prime into other primes: (1,3) and (7,9): 113719 ==> 331937 (prime), (1,7) and (3,9): 113719 ==> 779173 (prime), (1,9) and (3,7): 113719 ==> 997391 (prime).
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
N:= 100: # to get a(1) to a(N) R:= NULL: count:= 0: S[1] := [0=1,1=3,2=7,3=9]: S[2] := [0=3,1=1,2=9,3=7]: S[3] := [0=7,1=9,2=1,3=3]: S[4] := [0=9,1=7,2=3,3=1]: g:= L -> add(L[i]*10^(i-1),i=1..nops(L)): for d from 6 while count < N do for n from 4^d to 2*4^d-1 while count < N do L:= convert(n,base,4)[1..-2]; if nops(convert(L,set)) < 4 then next fi; if andmap(isprime,[seq(g(subs(S[i],L)),i=1..4)]) then R:= R, g(subs(S[1],L)); count:= count+1; fi od od: R; # Robert Israel, Jul 27 2020
Extensions
Offset changed by Robert Israel, Jul 27 2020
Comments