A108399 Least positive k such that n^2 + k is a golden semiprime (A108540).
5, 2, 6, 61, 52, 41, 28, 13, 106, 87, 66, 43, 18, 393, 364, 333, 300, 265, 228, 189, 148, 105, 60, 13, 226, 175, 122, 67, 10, 463, 402, 339, 274, 207, 138, 67, 814, 739, 662, 583, 502, 419, 334, 247, 158, 67, 538, 443, 346, 247, 146, 43, 4494, 4387, 4278, 4167, 4054
Offset: 1
Examples
a(4)=61 because 4^2+61 = 77 = 7*11 and 7*phi-11 = 0.326237... < 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A108540.
Programs
-
Mathematica
goldQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] != 2, False, If[Max[f[[;;,2]]] != 1, False, Abs[f[[2,1]] - f[[1,1]] * GoldenRatio] < 1]]]; a[n_] := Module[{k = 1}, While[!goldQ[n^2 + k], k++]; k]; Array[a, 57] (* Amiram Eldar, Nov 29 2019 *)
Comments