This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108407 #21 Apr 28 2025 12:20:59 %S A108407 0,0,1,0,2,0,3,3,4,0,6,0,6,6,8,0,9,0,10,9,10,0,14,9,12,12,15,0,18,0, %T A108407 17,15,16,15,23,0,18,18,24,0,25,0,24,24,22,0,31,18,28,24,29,0,32,24, %U A108407 34,27,28,0,41,0,30,35,38,29,40,0,38,33,44,0,49,0,36,41,43,32,47,0,52 %N A108407 Number of added unique known entries when going from the n X n to the (n+1) X (n+1) multiplication table. %H A108407 Seiichi Manyama, <a href="/A108407/b108407.txt">Table of n, a(n) for n = 1..1000</a> %F A108407 For prime p, a(p-1) = 0. %F A108407 a(n) = n+1 - A062854(n+1). %e A108407 When going to 8 X 8, the added entries 8,16,24 are already known, so a(7)=3: %e A108407 .1..2..3..4..5..6..7....8 * %e A108407 ....4..6..8.10.12.14...16 * %e A108407 .......9.12.15.18.21...24 * %e A108407 .........16.20.24.28...32 %e A108407 ............25.30.35...40 %e A108407 ...............36.42...48 %e A108407 ..................49...56 %e A108407 .......................64 %p A108407 A108407 := proc(n) %p A108407 n+1-A062854(n+1) ; %p A108407 end proc: %p A108407 seq(A108407(n),n=1..40) ; # _R. J. Mathar_, Oct 02 2020 %t A108407 nmax = 100; %t A108407 A062854 = Table[u = If[n == 1, {}, Union[u, n Range[n]]]; Length[u], {n, 1, nmax+1}] // Differences // Prepend[#, 1]&; %t A108407 a[n_] := n + 1 - A062854[[n+1]]; %t A108407 Table[a[n], {n, 1, nmax}] (* _Jean-François Alcover_, Oct 02 2020 *) %o A108407 (Python) %o A108407 from itertools import takewhile %o A108407 from sympy import divisors %o A108407 def A108407(n): return n+1-sum(1 for i in range(1,n+2) if all(d<=i for d in takewhile(lambda d:d<=n,divisors((n+1)*i)))) # _Chai Wah Wu_, Oct 13 2023 %Y A108407 Unique values of sequence are in A108408. %Y A108407 Cf. A027424 (total unique entries), A062854 (added unique unknown entries). %K A108407 nonn %O A108407 1,5 %A A108407 _Ralf Stephan_, Jun 03 2005