This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108418 #43 Mar 05 2024 16:33:00 %S A108418 13597,13759,15739,15937,15973,17359,17539,19753,31957,37159,37591, %T A108418 37951,39157,51973,53197,53719,53791,53917,57139,57193,71359,71593, %U A108418 73951,75193,75391,75913,75931,79153,79531,91573,91753,95317,95713,95731 %N A108418 Primes with at least one of each odd digit and no even digits. %C A108418 This is a subsequence of A030096. %C A108418 No even digits are allowable. Otherwise the first missing terms would be 105379, 105397, 109357, 109537. - _Zak Seidov_, Nov 24 2013 %H A108418 Georg Fischer, <a href="/A108418/b108418.txt">Table of n, a(n) for n = 1..3000</a> [recomputed Jul 08 2022; first 390 terms from Carmine Suriano] %t A108418 Select[Table[Prime[n],{n,10000}],!ContainsAny[IntegerDigits[#],{0,2,4,6,8}]&&ContainsAll[IntegerDigits[#],{1,3,5,7,9}]&] (* _James C. McMahon_, Mar 05 2024 *) %o A108418 (Python) %o A108418 from sympy import isprime %o A108418 from itertools import count, islice, product %o A108418 def agen(): %o A108418 for d in count(5): %o A108418 for p in product("13579", repeat=d): %o A108418 if set(p) != set("13579"): continue %o A108418 t = int("".join(p)) %o A108418 if isprime(t): yield t %o A108418 print(list(islice(agen(), 40))) # _Michael S. Branicky_, Jul 08 2022 %Y A108418 Cf. A030096 (Primes whose digits are all odd), A050288 (Pandigital primes), A108386 (Primes p such that p's set of distinct digits is {1, 3, 7, 9}). %Y A108418 Cf. A232447 (even digits are allowable). - _Zak Seidov_, Nov 24 2013 %K A108418 base,nonn %O A108418 1,1 %A A108418 _Rick L. Shepherd_, Jun 02 2005 %E A108418 Added missing last term with 5 different digits, _Carmine Suriano_, Jan 14 2011