This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108421 #20 Sep 02 2024 21:58:21 %S A108421 2,4,4,4,5,5,5,5,4,4,5,6,5,5,6,4,5,6,5,5,5,5,6,6,6,5,6,5,6,7,7,7,8,5, %T A108421 5,6,5,5,6,6,5,6,6,5,6,6,7,8,5,5,6,6,6,6,7,5,6,6,7,8,7,7,8,6,7,5,5,6, %U A108421 5,5,6,6,5,6,6,5,6,7,7,7,6,6,6,6,6,6,7,6,6,7,7,7,8,7,8,6,5,5,6,6,6,6,7,5,6 %N A108421 Smallest number of ones needed to write in binary representation 2*n as sum of two primes. %C A108421 a(n) = Min{A000120(p)+A000120(q) : p,q prime and p+q=2*n}. %C A108421 a(n) = A108422(n) - A108423(n). %C A108421 a(n) >= A000120(n)+1, with equality for n in A241757. - _Robert Israel_, Mar 25 2018 %H A108421 Robert Israel, <a href="/A108421/b108421.txt">Table of n, a(n) for n = 2..10000</a> %H A108421 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %H A108421 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A108421 n=15: 2*15=30 and A002375(15)=3 with 30=7+23=11+19=13+17, %e A108421 13+17 -> 1101+10001 needs a(15)=5 binary ones, whereas %e A108421 7+23 -> 111+10111 and 11+19 -> 1011+10011 need more. %p A108421 N:= 200: # to get a(2)..a(N) %p A108421 Primes:= select(isprime, [seq(i,i=3..2*N-3,2)]): %p A108421 Ones:= map(t -> convert(convert(t,base,2),`+`), Primes): %p A108421 V:= Vector(N): V[2]:= 2: %p A108421 for i from 1 to nops(Primes) do %p A108421 p:= Primes[i]; %p A108421 for j from 1 to i do %p A108421 k:= (p+Primes[j])/2; %p A108421 if k > N then break fi; %p A108421 t:= Ones[i]+Ones[j]; %p A108421 if V[k] = 0 or t < V[k] then V[k]:= t fi %p A108421 od %p A108421 od: %p A108421 convert(V[2..N],list); # _Robert Israel_, Mar 25 2018 %t A108421 Min[#]&/@(Table[Total[Flatten[IntegerDigits[#,2]]]&/@Select[ IntegerPartitions[ 2*n,{2}],AllTrue[#,PrimeQ]&],{n,2,110}]) (* _Harvey P. Dale_, Jul 27 2020 *) %Y A108421 Cf. A000120, A004676, A005843, A007088, A108422, A108423, A241757. %K A108421 nonn,base %O A108421 2,1 %A A108421 _Reinhard Zumkeller_, Jun 03 2005