This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108422 #21 Sep 02 2024 21:57:48 %S A108422 2,4,4,5,5,6,5,6,6,6,6,6,6,7,6,7,7,8,7,8,8,8,7,8,8,9,7,8,9,10,7,8,8,9, %T A108422 8,9,9,10,8,9,9,8,9,10,10,10,8,8,9,9,9,10,10,10,9,9,8,10,10,10,8,10,8, %U A108422 9,9,10,9,10,10,9,9,10,9,11,9,10,11,12,9,10,10,10,10,11,9,12,8,9,11,10,8,12 %N A108422 Greatest number of ones that can be used to write in binary representation 2*n as sum of two primes. %C A108422 a(n) = Max{A000120(p)+A000120(q) : p,q prime and p+q=2*n}. %C A108422 a(n) = A108423(n) + A108421(n). %H A108422 Robert Israel, <a href="/A108422/b108422.txt">Table of n, a(n) for n = 2..10000</a> %H A108422 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %H A108422 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %p A108422 N:= 200: # to get a(2)..a(N) %p A108422 Primes:= select(isprime, [seq(i, i=3..2*N-3, 2)]): %p A108422 Ones:= map(t -> convert(convert(t, base, 2), `+`), Primes): %p A108422 V:= Vector(N): V[2]:= 2: %p A108422 for i from 1 to nops(Primes) do %p A108422 p:= Primes[i]; %p A108422 for j from 1 to i do %p A108422 k:= (p+Primes[j])/2; %p A108422 if k > N then break fi; %p A108422 t:= Ones[i]+Ones[j]; %p A108422 if t > V[k] then V[k]:= t fi %p A108422 od %p A108422 od: %p A108422 convert(V[2..N], list); # _Robert Israel_, Mar 26 2018 %Y A108422 Cf. A004676, A005843, A007088, A108421. %K A108422 nonn,base %O A108422 2,1 %A A108422 _Reinhard Zumkeller_, Jun 03 2005