cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108424 Number of paths from (0,0) to (3n,0) that stay in the first quadrant, consist of steps u=(2,1), U=(1,2), or d=(1,-1) and do not touch the x-axis, except at the endpoints.

This page as a plain text file.
%I A108424 #40 Jan 20 2025 02:34:41
%S A108424 2,6,34,238,1858,15510,135490,1223134,11320066,106830502,1024144482,
%T A108424 9945711566,97634828354,967298498358,9659274283650,97119829841854,
%U A108424 982391779220482,9990160542904134,102074758837531810,1047391288012377774,10788532748880319298
%N A108424 Number of paths from (0,0) to (3n,0) that stay in the first quadrant, consist of steps u=(2,1), U=(1,2), or d=(1,-1) and do not touch the x-axis, except at the endpoints.
%C A108424 These are the large nu-Schröder numbers with nu=NE(NEE)^(n-1). - _Matias von Bell_, Jun 02 2021
%H A108424 Vincenzo Librandi, <a href="/A108424/b108424.txt">Table of n, a(n) for n = 1..200</a>
%H A108424 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%H A108424 M. von Bell and M. Yip, <a href="https://arxiv.org/abs/2006.09804">Schröder combinatorics and nu-associahedra</a>, arXiv:2006.09804 [math.CO], 2020.
%F A108424 a(n) = A027307(n-1) + A032349(n).
%F A108424 G.f.: z*A+z*A^2, where A=1+z*A^2+z*A^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3.
%F A108424 a(n) = (n*2^n*C(2*n, n)/((2n-1)(n+1))) * Sum_{j=0..n-1} (C(n-1, j))^2 / (2^j*C(n+j+1,j)).
%F A108424 Recurrence: n*(2*n-1)*a(n) = 3*(6*n^2-10*n+3)*a(n-1) + (46*n^2-227*n+279)*a(n-2) + 2*(n-3)*(2*n-7)*a(n-3). - _Vaclav Kotesovec_, Oct 17 2012
%F A108424 a(n) ~ sqrt(30*sqrt(5) - 50)*((11 + 5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 17 2012
%F A108424 a(n) = Sum_{i=0..n} (2*n+i-2)!/((n-i)!*(n+i-1)!*i!), n>0. - _Vladimir Kruchinin_, Feb 16 2013
%F A108424 From _Matias von Bell_, Jun 02 2021: (Start)
%F A108424 a(n) = 2*Sum_{i>=0} (1/n)*binomial(2*n-2,i)*binomial(3*n-2-i,2*n-1).
%F A108424 a(n) = 2*A344553(n). (End)
%F A108424 a(n) = 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1) / n. - _Peter Luschny_, Jun 14 2021
%F A108424 From _Peter Bala_, Jun 17 2023: (Start)
%F A108424 a(n) = (-1)^(n+1) * (1/((d-1)*n + 1))*Sum_{i = 0..n} binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i), with d = -1.
%F A108424 P-recursive: n*(2*n - 1)*(5*n - 8)*a(n) = (110*n^3 - 396*n^2 + 445*n - 150)*a(n-1) + (n - 2)*(2*n - 5)*(5*n - 3)*a(n-2) with a(1) = 2 and a(2) = 6.
%F A108424 The g.f. A(x) = 2*x + 6*x^2 + 34*x^3 + .... Then 1/(1 - A(x)) = 1 + 2*x + 10*x^2 + 66*x^3 + .. is the g.f. of A027307.
%F A108424 (1/x) * the series reversion of x*(1 - A(x)) = 1 + 2*x + 14*x^2 + 134*x^3 + ... is the g.f. of A144097.
%F A108424 (1/x) * the series reversion of x/(1 - A(x)) = 1 - 2*x - 2*x^2 - 6*x^3 - 22*x^4 - 90*x^5 - ... =  1 - x - x*S(x), where S(x) is the g.f. of A006318. (End)
%e A108424 a(2) = 6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
%p A108424 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A+z*A^2: Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
%p A108424 a:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1) fi end: seq(a(n),n=1..19);
%p A108424 # Alternative:
%p A108424 a := n -> 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1)/n:
%p A108424 seq(simplify(a(n)), n = 1..21); # _Peter Luschny_, Jun 14 2021
%t A108424 Table[(n*2^n*Binomial[2*n,n]/((2n-1)*(n+1))) * Sum[(Binomial[n-1,j])^2/ (2^j * Binomial[n+j+1,j]), {j,0,n-1}], {n,1,20}] (* _Vaclav Kotesovec_, Oct 17 2012 *)
%Y A108424 Cf. A027307, A032349, A344553.
%Y A108424 Cf. A006318 (d = 2, signed version at d = 0), A027307 (d = 3), A144097 (d = 4), A260332 (d = 5, conjecturally), A363006 (d = 6).
%K A108424 nonn
%O A108424 1,1
%A A108424 _Emeric Deutsch_, Jun 03 2005