cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108432 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no hills (a hill is either a ud or a Udd starting at the x-axis).

This page as a plain text file.
%I A108432 #29 Nov 03 2023 15:12:02
%S A108432 1,0,6,34,274,2266,19738,177642,1640050,15445690,147813706,1433309194,
%T A108432 14052298690,139063589370,1387288675002,13936344557354,
%U A108432 140859338668306,1431424362057018,14616361066692778,149892742974500042,1543146417012350050,15942622531081651578
%N A108432 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no hills (a hill is either a ud or a Udd starting at the x-axis).
%C A108432 Column 0 of A108431.
%C A108432 The radius of convergence of g.f. y(x) is r = (5*sqrt(5)-11)/2, with y(r) = (11*sqrt(5)+23)/38. - _Vaclav Kotesovec_, Mar 17 2014
%H A108432 Alois P. Heinz, <a href="/A108432/b108432.txt">Table of n, a(n) for n = 0..960</a> (first 151 terms from Vaclav Kotesovec)
%H A108432 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108432 G.f.: 1/(1+2z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
%F A108432 G.f. y(x) satisfies: -1 + y + 6*x*y - 5*x*y^2 - 12*x^2*y^2 - x*y^3 + 6*x^2*y^3 + 8*x^3*y^3 = 0. - _Vaclav Kotesovec_, Mar 17 2014
%F A108432 a(n) ~ (11+5*sqrt(5))^n * sqrt(273965 + 122523*sqrt(5)) / (361 * sqrt(5*Pi) * n^(3/2) * 2^(n+3/2)). - _Vaclav Kotesovec_, Mar 17 2014
%F A108432 D-finite with recurrence 4*n*(2*n+1)*a(n) +3*(-70*n^2+83*n-34)*a(n-1) +11*(154*n^2-436*n+327)*a(n-2) +3*(-1042*n^2+4875*n-4627)*a(n-3) +2*(-4016*n^2+18260*n-21399)*a(n-4) +12*(-206*n^2+1383*n-2322)*a(n-5) -80*(n-4)*(2*n-9)*a(n-6)=0. - _R. J. Mathar_, Jul 26 2022
%e A108432 a(2)=6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
%p A108432 g:=1/(1+2*z-z*A-z*A^2): A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3:gser:=series(g,z=0,27): 1,seq(coeff(gser,z^n),n=1..24);
%p A108432 # second Maple program:
%p A108432 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
%p A108432      `if`(x=0, 1, `if`(t and y=1, 0, b(x-1, y-1, t))+
%p A108432       b(x-1, y+2, is(y=0))+b(x-2, y+1, is(y=0))))
%p A108432     end:
%p A108432 a:= n-> b(3*n, 0, false):
%p A108432 seq(a(n), n=0..25);  # _Alois P. Heinz_, Oct 06 2015
%t A108432 CoefficientList[Series[9/(3 + 18*x + 2*(3+x)*Cos[2/3*ArcSin[Sqrt[x]*(18+x)/(3+x)^(3/2)]] - 2*x*Sqrt[(3+x)/x]*Sin[1/3*ArcSin[Sqrt[x]*(18+x)/(3+x)^(3/2)]]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 17 2014 *)
%o A108432 (PARI) {a(n)=local(y=1); for(i=1, n, y=-(-1 + 6*x*y - 5*x*y^2 - 12*x^2*y^2 - x*y^3 + 6*x^2*y^3 + 8*x^3*y^3) + (O(x^n))^3); polcoeff(y, n)}
%o A108432 for(n=0, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Mar 17 2014
%Y A108432 Cf. A027307, A108431, A108433.
%K A108432 nonn,nice
%O A108432 0,3
%A A108432 _Emeric Deutsch_, Jun 03 2005