cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108438 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having abscissa of the first peak equal to k.

Original entry on oeis.org

1, 1, 4, 3, 2, 1, 24, 18, 13, 7, 3, 1, 172, 130, 96, 55, 28, 12, 4, 1, 1360, 1034, 772, 458, 249, 119, 50, 18, 5, 1, 11444, 8738, 6568, 3982, 2244, 1137, 526, 219, 80, 25, 6, 1, 100520, 76994, 58140, 35770, 20624, 10836, 5293, 2383, 981, 365, 119, 33, 7, 1
Offset: 1

Views

Author

Emeric Deutsch, Jun 04 2005

Keywords

Comments

Row n contains 2n terms. Row sums yield A027307. T(n,1)=A032349(n-1).

Examples

			T(2,3) = 2 because we have Uuddd and uUddd.
Triangle begins:
1,1;
4,3,2,1;
24,18,13,7,3,1;
172,130,96,55,28,12,4,1;
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-t^2*z*A-t*z*A^2)-1: Gserz:=simplify(series(G,z=0,10)): for n from 1 to 8 do P[n]:=sort(coeff(Gserz,z^n)) od: > for n from 1 to 8 do seq(coeff(P[n],t^k),k=1..2*n) od; # yields sequence in triangular form

Formula

G.f.: G = G(t,z) = 1/(1-t^2zA-tzA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).