cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108439 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having abscissa of first return equal to 3k.

Original entry on oeis.org

2, 4, 6, 20, 12, 34, 132, 60, 68, 238, 996, 396, 340, 476, 1858, 8132, 2988, 2244, 2380, 3716, 15510, 69940, 24396, 16932, 15708, 18580, 31020, 135490, 624132, 209820, 138244, 118524, 122628, 155100, 270980, 1223134, 5725124, 1872396, 1188980
Offset: 1

Views

Author

Emeric Deutsch, Jun 05 2005

Keywords

Comments

Row sums yield A027307. T(n,n) = A108424(n).

Examples

			T(2,1)=4 because we have u(d)ud, u(d)Udd, Ud(d)ud and Ud(d)Udd, the d step of the first return being shown between parentheses.
Triangle begins:
2;
4,6;
20,12,34;
132,60,68,238;
...
		

Crossrefs

Programs

  • Maple
    a:=n->sum(2^(i+1)*binomial(2*n,i)*binomial(n,i+1),i=0..n-1)/n: b:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1): fi end: T:=proc(n,k) if k=n then b(n) else b(k)*a(n-k) fi end:for n from 1 to 9 do seq(T(n,k),k=1..n) od; > # yields sequence in triangular form

Formula

G.f.: tzA(z)A(tz)+tzA(z)A^2(tz), where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
T(n, k) = A108424(k)*A027307(n-k) (there are explicit formulas in A108424 and A027307).