A108439 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having abscissa of first return equal to 3k.
2, 4, 6, 20, 12, 34, 132, 60, 68, 238, 996, 396, 340, 476, 1858, 8132, 2988, 2244, 2380, 3716, 15510, 69940, 24396, 16932, 15708, 18580, 31020, 135490, 624132, 209820, 138244, 118524, 122628, 155100, 270980, 1223134, 5725124, 1872396, 1188980
Offset: 1
Examples
T(2,1)=4 because we have u(d)ud, u(d)Udd, Ud(d)ud and Ud(d)Udd, the d step of the first return being shown between parentheses. Triangle begins: 2; 4,6; 20,12,34; 132,60,68,238; ...
Links
- Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
Programs
-
Maple
a:=n->sum(2^(i+1)*binomial(2*n,i)*binomial(n,i+1),i=0..n-1)/n: b:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1): fi end: T:=proc(n,k) if k=n then b(n) else b(k)*a(n-k) fi end:for n from 1 to 9 do seq(T(n,k),k=1..n) od; > # yields sequence in triangular form
Comments