cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108442 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having only u steps among the steps leading to the first d step.

This page as a plain text file.
%I A108442 #23 Jul 26 2022 14:19:17
%S A108442 1,1,3,15,97,721,5827,49759,441729,4035937,37702723,358474735,
%T A108442 3457592161,33748593841,332730216579,3308635650495,33145196426753,
%U A108442 334193815799233,3388807714823043,34537227997917391,353578650475659617,3634495706671023505,37496621681376849219,388135791657414454815
%N A108442 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having only u steps among the steps leading to the first d step.
%H A108442 G. C. Greubel, <a href="/A108442/b108442.txt">Table of n, a(n) for n = 0..955</a>
%H A108442 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108442 G.f.: 1/(1-z*A), where A = 1 + z*A^2 + z*A^3 = (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
%F A108442 a(n) = Sum_{k=1..n} (k*(Sum_{i=0..n-k} binomial(2*n-k, i)*binomial(3*n-2*k-i-1, 2*n-k-1))/(2*n-k)), n > 0, a(0)=1. - _Vladimir Kruchinin_, Oct 23 2011
%F A108442 G.f. y(x) satisfies: (3+x)*y*(1-y) + (1+x^2)*y^3 = 1. - _Vaclav Kotesovec_, Mar 17 2014
%F A108442 a(n) ~ (11+5*sqrt(5))^n / (5^(5/4) * sqrt(Pi) * n^(3/2) * 2^(n+1)). - _Vaclav Kotesovec_, Mar 17 2014
%F A108442 D-finite with recurrence (2*n-1)*(n-1)*a(n) +6*(n^2-10*n+13)*a(n-1) +(-310*n^2+1869*n-2759)*a(n-2) +48*(-n+3)*a(n-3) +(-310*n^2+1851*n-2705)*a(n-4) +6*(-n^2+2*n+11)*a(n-5) +(n-5)*(2*n-11)*a(n-6)=0. - _R. J. Mathar_, Jul 26 2022
%e A108442 a(2)=3 because we have udud, udUdd and uudd.
%p A108442 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: gser:=series(1/(1-z*A),z=0,30): 1,seq(coeff(gser,z^n),n=1..25);
%t A108442 Flatten[{1,Table[Sum[k*Sum[Binomial[2*n-k, i]*Binomial[3*n-2*k-i-1, 2*n-k-1], {i, 0, n-k}]/(2*n-k), {k, 1, n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Mar 17 2014, after _Vladimir Kruchinin_ *)
%o A108442 (Maxima)
%o A108442 a(n):=if n=0 then 1 else sum((k*sum(binomial(2*n-k,i)*binomial(3*n-2*k-i-1,2*n-k-1),i,0,n-k))/(2*n-k),k,1,n); /* _Vladimir Kruchinin_, Oct 23 2011 */
%Y A108442 Column 0 of A108441.
%Y A108442 Cf. A027307, A108441.
%K A108442 nonn
%O A108442 0,3
%A A108442 _Emeric Deutsch_, Jun 08 2005