cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108444 Number of triple descents (i.e., ddd's) in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1).

This page as a plain text file.
%I A108444 #15 Jul 26 2017 03:16:38
%S A108444 5,73,857,9505,103341,1114969,11996209,128989249,1387480981,
%T A108444 14937170089,160978217225,1736820843233,18760031574077,
%U A108444 202856430706617,2195832009812065,23792481053343361,258038743598973477
%N A108444 Number of triple descents (i.e., ddd's) in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1).
%H A108444 Vaclav Kotesovec, <a href="/A108444/b108444.txt">Table of n, a(n) for n = 2..100</a>
%H A108444 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108444 a(n) = Sum_{k=1..2n-1} k*A108443(n,k). Example: a(3) = 1*24 + 2*15 + 3*3 + 4*1 = 73.
%F A108444 G.f.: zA(2A^2-2zA^2-zA-2)/(1-2zA-3zA^2), where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
%F A108444 Recurrence: n*(2*n+1)*(40*n^5 - 100*n^4 - 758*n^3 + 3649*n^2 - 5474*n + 2727)*a(n) = (880*n^7 - 2200*n^6 - 15316*n^5 + 79354*n^4 - 145332*n^3 + 125379*n^2 - 48111*n + 5220)*a(n-1) + (n-3)*(2*n - 5)*(40*n^5 + 100*n^4 - 758*n^3 + 1175*n^2 - 650*n + 84)*a(n-2). - _Vaclav Kotesovec_, Mar 18 2014
%F A108444 a(n) ~ 5^(3/4) * ((11+5*sqrt(5))/2)^n / (10*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 18 2014
%e A108444 a(2)=5 because in the ten paths udud, udUdd, uudd, uU(ddd), Uddud, UddUdd, Ududd, UdU(ddd), Uu(ddd) and UU(d[dd)d] (see A027307) we have 5 ddd's (shown between parentheses).
%p A108444 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A*(-z*A-2*z*A^2-2+2*A^2)/(1-3*z*A^2-2*z*A): Gser:=series(G,z=0,26): seq(coeff(Gser,z^n),n=2..21);
%Y A108444 Cf. A027307, A108443.
%K A108444 nonn
%O A108444 2,1
%A A108444 _Emeric Deutsch_, Jun 10 2005