cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108445 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k pyramids (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).

Original entry on oeis.org

1, 0, 2, 4, 2, 4, 32, 18, 8, 8, 252, 146, 60, 24, 16, 2112, 1186, 496, 176, 64, 32, 18484, 10146, 4148, 1488, 480, 160, 64, 166976, 90162, 36216, 12792, 4160, 1248, 384, 128, 1545548, 824114, 326828, 113960, 36720, 11104, 3136, 896, 256, 14583808, 7699394
Offset: 0

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

Row sums yield A027307. Column 0 yields A108449. Number of pyramids in all paths from (0,0) to (3n,0) is given by A108450

Examples

			T(2,1)=2 because we have uudd and UUdddd.
Triangle begins:
1;
0,2;
4,2,4;
32,18,8,8;
252,146,60,24,16;
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=(1-z)/(1+z-2*t*z-z*(1-z)*A*(1+A)): Gser:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form

Formula

G.f. =(1-z)/[1+z-2tz-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).