cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108447 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no peaks of the form ud.

This page as a plain text file.
%I A108447 #36 Jan 20 2025 02:34:53
%S A108447 1,1,4,20,113,688,4404,29219,199140,1385904,9807820,70364704,
%T A108447 510609620,3741212535,27639233548,205660399220,1539916433473,
%U A108447 11594310041792,87725707127600,666681174728724,5086601816592432,38948589882247968
%N A108447 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no peaks of the form ud.
%C A108447 Column 0 of A108446.
%H A108447 Seiichi Manyama, <a href="/A108447/b108447.txt">Table of n, a(n) for n = 0..1000</a>
%H A108447 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108447 a(n) = (1/n) * Sum_{j=0..n} binomial(n, j)*binomial(n+2j, j-1) (n>=1); a(0)=1.
%F A108447 G.f.: G satisfies G = 1 + z*G*(G^2+G-1).
%F A108447 a(n) = hypergeom([1-n,(n+3)/2,(n+4)/2],[2,n+3],-4) for n>=1. - _Peter Luschny_, Oct 30 2015
%F A108447 a(n) ~ sqrt((s-1) / (Pi*(1 + 3*s))) / (2*n^(3/2) * r^(n + 1/2)), where r = 0.1215851068721183026145063923222031450327682505108... and s = 1.451605962955776643742608112028547116887657025022... are real roots of the system of equations 1 + r*s*(-1 + s + s^2) = s, r*(-1 + 2*s + 3*s^2) = 1. - _Vaclav Kotesovec_, Nov 27 2017
%F A108447 O.g.f.: A(x) = (1/x) * Revert( x/c(x/(1 - x)) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - _Peter Bala_, Mar 08 2020
%F A108447 D-finite with recurrence 8*n*(2*n+1)*a(n) -6*(2*n-1)*(13*n-10)*a(n-1) +24*(4*n-7)*(2*n-5)*a(n-2) +4*(19*n-40)*(n-3)*a(n-3) -35*(n-3)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%e A108447 a(2)=4 because we have uUddd, UddUdd, UdUddd and UUdddd.
%p A108447 a:=n->(1/n)*sum(binomial(n,j)*binomial(n+2*j,j-1),j=0..n): 1, seq(a(n),n=1..25);
%p A108447 a := n -> `if`(n=0,1,simplify(hypergeom([1-n,(n+3)/2,(n+4)/2],[2, n+3],-4))): seq(a(n), n=0..21); # _Peter Luschny_, Oct 30 2015
%t A108447 Flatten[{1, Table[Sum[Binomial[n, j]*Binomial[n + 2*j, j-1], {j, 0, n}]/n, {n, 1, 20}]}] (* _Vaclav Kotesovec_, Nov 27 2017 *)
%t A108447 terms = 22; g[_] = 1; Do[g[x_] = 1+x*g[x]*(g[x]^2+g[x]-1) + O[x]^terms // Normal, {terms}]; CoefficientList[g[x], x] (* _Jean-François Alcover_, Jul 19 2018 *)
%Y A108447 Cf. A000108, A027307, A108446, A108425, A108426.
%K A108447 nonn
%O A108447 0,3
%A A108447 _Emeric Deutsch_, Jun 10 2005