This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108448 #38 Sep 02 2024 21:58:43 %S A108448 1,7,61,575,5641,56695,579125,5984767,62390545,654862247,6911195501, %T A108448 73265596607,779594526361,8321683861015,89070157349221, %U A108448 955598531432447,10273391096237089,110647714508386375,1193641560393864605 %N A108448 Number of peaks of the form ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1). %C A108448 a(n) = Sum_{k=1..n} k*A108446(n,k). Example: a(3) = 1*32 + 2*13 + 3*1 = 61. %H A108448 Vincenzo Librandi, <a href="/A108448/b108448.txt">Table of n, a(n) for n = 1..200</a> %H A108448 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658</a>, American Math. Monthly, 107, 2000, 368-370. %F A108448 G.f.: z*A/(1-2*z*A-3*z*A^2), where A=1+z*A^2+z*A^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307). %F A108448 Recurrence: (n-1)*(2*n-1)*a(n) = (18*n^2-26*n+1)*a(n-1) + (46*n^2-225*n+276)*a(n-2) + 2*(n-3)*(2*n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 18 2012 %F A108448 a(n) ~ sqrt(70*sqrt(5)-150)*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 18 2012. Equivalently, a(n) ~ phi^(5*n - 2) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 07 2021 %F A108448 a(n) = Sum_{k=1..n} k*C(n-1,k-1)*C(2*n+k-1,n)/(n+k). - _Vladimir Kruchinin_, Mar 03 2014 %F A108448 a(n) = P(n-1,n,0,3), where P is the Jacobi Polynomial. - _Richard Turk_, Jun 27 2018 %F A108448 From _Peter Bala_, Feb 08 2024: (Start) %F A108448 a(n) = Sum_{k = 0..n-1} binomial(2*n-1, k)*binomial(n-1, k)*2^k. %F A108448 (n - 1)*(2*n - 1)*(10*n - 17)*a(n) = (220*n^3 - 814*n^2 + 950*n - 341)*a(n-1) + (n - 2)*(2*n - 3)*(10*n - 7)*a(n-2) with a(1) = 1 and a(2) = 7.. (End) %e A108448 a(2) = 7 because in the ten paths (ud)(ud), (ud)Udd, u(ud)d, uUddd, Udd(ud), UddUdd, Ud(ud)d, UdUddd, U(ud)dd and UUdddd (see A027307) we have 7 ud's (shown between parentheses). %p A108448 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A/(1-2*z*A-3*z*A^2): Gser:=series(G,z=0,25): seq(coeff(Gser,z^n),n=1..23); %t A108448 RecurrenceTable[{(n-1)*(2*n-1)*a[n]==(18*n^2-26*n+1)*a[n-1] +(46*n^2-225*n+276)*a[n-2]+2*(n-3)*(2*n-5)*a[n-3], a[1]==1, a[2]==7, a[3]==61},a,{n,20}] (* _Vaclav Kotesovec_, Oct 18 2012 *) %Y A108448 Cf. A027307, A108446, A108426, A108427. %K A108448 nonn,easy %O A108448 1,2 %A A108448 _Emeric Deutsch_, Jun 10 2005