cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108448 Number of peaks of the form ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1).

This page as a plain text file.
%I A108448 #38 Sep 02 2024 21:58:43
%S A108448 1,7,61,575,5641,56695,579125,5984767,62390545,654862247,6911195501,
%T A108448 73265596607,779594526361,8321683861015,89070157349221,
%U A108448 955598531432447,10273391096237089,110647714508386375,1193641560393864605
%N A108448 Number of peaks of the form ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1).
%C A108448 a(n) = Sum_{k=1..n} k*A108446(n,k). Example: a(3) = 1*32 + 2*13 + 3*1 = 61.
%H A108448 Vincenzo Librandi, <a href="/A108448/b108448.txt">Table of n, a(n) for n = 1..200</a>
%H A108448 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108448 G.f.: z*A/(1-2*z*A-3*z*A^2), where A=1+z*A^2+z*A^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
%F A108448 Recurrence: (n-1)*(2*n-1)*a(n) = (18*n^2-26*n+1)*a(n-1) + (46*n^2-225*n+276)*a(n-2) + 2*(n-3)*(2*n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 18 2012
%F A108448 a(n) ~ sqrt(70*sqrt(5)-150)*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 18 2012. Equivalently, a(n) ~ phi^(5*n - 2) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 07 2021
%F A108448 a(n) = Sum_{k=1..n} k*C(n-1,k-1)*C(2*n+k-1,n)/(n+k). - _Vladimir Kruchinin_, Mar 03 2014
%F A108448 a(n) = P(n-1,n,0,3), where P is the Jacobi Polynomial. - _Richard Turk_, Jun 27 2018
%F A108448 From _Peter Bala_, Feb 08 2024: (Start)
%F A108448 a(n) = Sum_{k = 0..n-1} binomial(2*n-1, k)*binomial(n-1, k)*2^k.
%F A108448 (n - 1)*(2*n - 1)*(10*n - 17)*a(n) = (220*n^3 - 814*n^2 + 950*n - 341)*a(n-1) + (n - 2)*(2*n - 3)*(10*n - 7)*a(n-2) with a(1) = 1 and a(2) = 7.. (End)
%e A108448 a(2) = 7 because in the ten paths (ud)(ud), (ud)Udd, u(ud)d, uUddd, Udd(ud), UddUdd, Ud(ud)d, UdUddd, U(ud)dd and UUdddd (see A027307) we have 7 ud's (shown between parentheses).
%p A108448 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A/(1-2*z*A-3*z*A^2): Gser:=series(G,z=0,25): seq(coeff(Gser,z^n),n=1..23);
%t A108448 RecurrenceTable[{(n-1)*(2*n-1)*a[n]==(18*n^2-26*n+1)*a[n-1] +(46*n^2-225*n+276)*a[n-2]+2*(n-3)*(2*n-5)*a[n-3], a[1]==1, a[2]==7, a[3]==61},a,{n,20}] (* _Vaclav Kotesovec_, Oct 18 2012 *)
%Y A108448 Cf. A027307, A108446, A108426, A108427.
%K A108448 nonn,easy
%O A108448 1,2
%A A108448 _Emeric Deutsch_, Jun 10 2005