A108445
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k pyramids (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).
Original entry on oeis.org
1, 0, 2, 4, 2, 4, 32, 18, 8, 8, 252, 146, 60, 24, 16, 2112, 1186, 496, 176, 64, 32, 18484, 10146, 4148, 1488, 480, 160, 64, 166976, 90162, 36216, 12792, 4160, 1248, 384, 128, 1545548, 824114, 326828, 113960, 36720, 11104, 3136, 896, 256, 14583808, 7699394
Offset: 0
T(2,1)=2 because we have uudd and UUdddd.
Triangle begins:
1;
0,2;
4,2,4;
32,18,8,8;
252,146,60,24,16;
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=(1-z)/(1+z-2*t*z-z*(1-z)*A*(1+A)): Gser:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
A108452
Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids of the first kind (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).
Original entry on oeis.org
1, 1, 6, 44, 344, 2856, 24816, 223016, 2056256, 19344472, 184956240, 1792088296, 17558218048, 173659691928, 1731556718224, 17387182158184, 175670235597120, 1784561125349464, 18216639085961552, 186762117058304104
Offset: 0
a(2)=6 because the paths uUddd, UddUdd, Ududd, UdUddd, Uuddd and UUdddd have no pyramids of the first kind.
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=(1-z)/(1-z*(1-z)*A*(1+A)): gser:=series(g,z=0,24): 1,seq(coeff(gser,z^n),n=1..21);
-
{a(n)=local(y=1+x); for(i=1, n, y = -(-1 + 3*x - 3*x^2 + x^3 - 3*x^2*y + 2*x^3*y - 3*x*y^2 + 4*x^2*y^2 - 2*x^3*y^2 + x^4*y^2 - x*y^3 + 5*x^2*y^3 - 5*x^3*y^3 + 2*x^4*y^3) + (O(x^n))^4); polcoeff(y, n)}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 18 2014
A109157
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having sum of the heights of its pyramids equal to k (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis; p is the height of the pyramid).
Original entry on oeis.org
1, 0, 1, 1, 4, 0, 2, 2, 2, 32, 8, 8, 4, 5, 5, 4, 252, 64, 84, 24, 28, 12, 14, 12, 8, 2112, 520, 680, 240, 232, 88, 76, 37, 37, 28, 16, 18484, 4480, 5804, 1992, 2012, 776, 656, 264, 206, 106, 94, 64, 32, 166976, 40008, 51592, 17440, 17400, 6776, 5680, 2392, 1768
Offset: 0
T(2,3)=2 because we have udUdd and Uddud.
Triangle begins:
1;
0,1,1;
4,0,2,2,2;
32,8,8,4,5,5,4;
252,64,84,24,28,12,14,12,8;
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=-(-1+z)*(-1+t*z)*(-1+t^2*z)/(z*(-1+z)*(-1+t^2*z)*(-1+t*z)*A*(1+A)+1-2*t*z-2*t^2*z+z+3*t^3*z^2-t^3*z^3): Gser:=simplify(series(G,z=0,10)): P[0]:=1: for n from 1 to 7 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 7 do seq(coeff(t*P[n],t^k),k=1..2*n+1) od; # yields sequence in triangular form
Showing 1-3 of 3 results.
Comments