cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108450 Number of pyramids in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).

This page as a plain text file.
%I A108450 #26 Jul 26 2022 14:20:59
%S A108450 2,10,58,402,3122,26010,227050,2049186,18964194,178976426,1715905050,
%T A108450 16665027378,163611970066,1621103006010,16189480081354,
%U A108450 162791835045698,1646810150270914,16748008972020554,171135004105459194
%N A108450 Number of pyramids in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).
%C A108450 A108450(n)=sum(k*A108445(k),k=1..n) (for example, A108450(3)=1*18+2*8+3*8=58). A108450(n)=2*A108453(n). A108450 =2*partial sums of A032349.
%H A108450 Vaclav Kotesovec, <a href="/A108450/b108450.txt">Table of n, a(n) for n = 1..140</a>
%H A108450 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108450 G.f.: 2*z*A^2/(1-z), where A=1+z*A^2+z*A^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
%F A108450 G.f. y(x) satisfies: y = (2*x*(2+y-x*y)^2)/((1-x)*(2-y+x*y)^2). - _Vaclav Kotesovec_, Mar 17 2014
%F A108450 a(n) ~ (3*sqrt(5)-1) * ((11+5*sqrt(5))/2)^n /(11*5^(1/4)*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 17 2014
%F A108450 a(n) = 2*Sum_{k=0..n-1}(Sum_{i=0..k}(binomial(2*k+2,k-i)* binomial(2*k+i+1,2*k+1))/(k+1)). - _Vladimir Kruchinin_, Feb 29 2016
%F A108450 D-finite with recurrence n*(2*n-1)*a(n) +6*-(n-1)*(5*n-6)*a(n-1) +4*(23*n^2-97*n+111)*a(n-2) +2*(-29*n^2+142*n-174)*a(n-3) -3*(2*n-5)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%e A108450 a(2)=10 because in the A027307(2)=10 paths we have altogether 10 pyramids (shown between parentheses): (ud)(ud), (ud)(Udd), (uudd), uUddd, (Udd)(ud), (Udd)(Udd), Ududd, UdUddd, Uuddd, (UUdddd).
%p A108450 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=2*z*A^2/(1-z): gser:=series(g,z=0,25): seq(coeff(gser,z^n),n=1..22);
%t A108450 Table[2 Sum[Sum[Binomial[2 k + 2, k - i] Binomial[2 k + i + 1, 2 k + 1], {i, 0, k}]/(k + 1), {k, 0, n - 1}], {n, 19}] (* _Michael De Vlieger_, Feb 29 2016 *)
%o A108450 (PARI) {a(n)=local(y=2*x); for(i=1, n, y=(2*x*(2+y-x*y)^2)/((1-x)*(2-y+x*y)^2) + (O(x^n))^3); polcoeff(y, n)}
%o A108450 for(n=1, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Mar 17 2014
%o A108450 (Maxima)
%o A108450 a(n):=2*sum(sum(binomial(2*k+2,k-i)*binomial(2*k+i+1,2*k+1),i,0,k)/(k+1),k,0,n-1);
%o A108450 /* _Vladimir Kruchinin_, Feb 29 2016 */
%Y A108450 Cf. A027307, A108445, A108453, A032349.
%K A108450 nonn
%O A108450 1,1
%A A108450 _Emeric Deutsch_, Jun 11 2005