cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108453 Number of pyramids of the first kind in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).

This page as a plain text file.
%I A108453 #13 Jul 26 2022 14:22:28
%S A108453 1,5,29,201,1561,13005,113525,1024593,9482097,89488213,857952525,
%T A108453 8332513689,81805985033,810551503005,8094740040677,81395917522849,
%U A108453 823405075135457,8374004486010277,85567502052729597,878066090712156521
%N A108453 Number of pyramids of the first kind in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).
%C A108453 A108453(n)=sum(k*A108451(k),k=1..n) (for example, A108453(3)=1*16+2*5+3*1=29). A108453(n)=(1/2)*A108450(n). A108453 = partial sums of A032349.
%H A108453 Vaclav Kotesovec, <a href="/A108453/b108453.txt">Table of n, a(n) for n = 1..160</a>
%H A108453 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.
%F A108453 G.f.=zA^2/(1-z), where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
%F A108453 G.f. y(x) satisfies: x*(1+y-x*y)^2 = (1-x)*y*(1-y+x*y)^2. - _Vaclav Kotesovec_, Mar 17 2014
%F A108453 a(n) ~ sqrt(23*sqrt(5)-15) * (11+5*sqrt(5))^n / (11* sqrt(5*Pi) * n^(3/2) * 2^(n+1/2)). - _Vaclav Kotesovec_, Mar 17 2014
%F A108453 D-finite with recurrence n*(2*n-1)*a(n) -6*(n-1)*(5*n-6)*a(n-1) +4*(23*n^2-97*n+111)*a(n-2) +2*(-29*n^2+142*n-174)*a(n-3) -3*(2*n-5)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%e A108453 a(2)=5 because in the A027307(2)=10 paths we have altogether 5 pyramids of the first kind (shown between parentheses): (ud)(ud), (ud)Udd, (uudd), uUddd, Udd(ud), UddUdd, Ududd, UdUddd, Uuddd, UUdddd.
%p A108453 A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=z*A^2/(1-z): gser:=series(g,z=0,25): seq(coeff(gser,z^n),n=1..22);
%o A108453 (PARI) {a(n)=local(y=x); for(i=1, n, y=x*(1+y-x*y)^2/((1-x)*(1-y+x*y)^2) + (O(x^n))^3); polcoeff(y, n)}
%o A108453 for(n=1, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Mar 17 2014
%Y A108453 Cf. A027307, A108450, A108451, A032349.
%K A108453 nonn
%O A108453 1,2
%A A108453 _Emeric Deutsch_, Jun 11 2005