cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108465 Table read by antidiagonals: T(n,k) (n>=2) = number of factorizations of (n,k) into pairs (i,j) with i,j>1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 4, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

(a,b)*(x,y)=(a*x,b*y).

Examples

			1 1 1 1 1 ...
1 1 1 1 1 ...
1 1 2 1 2 ...
1 1 1 1 1 ...
1 1 2 1 3 ...
(8,6)=(4,3)*(2,2)=(4,2)*(2,3), so a(8,6)=3.
		

Crossrefs

Cf. A108461. Columns 4, 6: A038548 (n>1), A032741. Main diagonal: A108466.

Formula

Dirichlet g.f.: A(s, t) = exp(B(s, t)/1 + B(2*s, 2*t)/2 + B(3*s, 3*t)/3 + ...) where B(s, t) = (zeta(s)-1)*(zeta(t)-1).