A108474 Expansion of 1/((1-2*x)*(1+4*x^2)).
1, 2, 0, 0, 16, 32, 0, 0, 256, 512, 0, 0, 4096, 8192, 0, 0, 65536, 131072, 0, 0, 1048576, 2097152, 0, 0, 16777216, 33554432, 0, 0, 268435456, 536870912, 0, 0, 4294967296, 8589934592, 0, 0, 68719476736, 137438953472, 0, 0, 1099511627776
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-4,8).
Formula
G.f.: 1/(1-2*x+4*x^2-8*x^3);
a(n) = 2*a(n-1) - 4*a(n-2) + 8*a(n-3);
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j)*(-1)^j.
a(n) = 2^n*A133872(n). - R. J. Mathar, Mar 08 2021
Comments