cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108486 Sum binomial(2n-2k,2k)3^k*2^(n-k), k=0..floor(n/2).

Original entry on oeis.org

1, 2, 10, 80, 412, 2456, 14680, 85376, 503056, 2959136, 17381536, 102199040, 600757696, 3531251072, 20758107520, 122021457920, 717273440512, 4216334967296, 24784750512640, 145691471876096, 856414086962176
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Comments

In general, sum{k=0..floor(n/2), C(2n-2k,2k)a^k*b^(n-k)} has expansion (1-bx-abx^2)/(1-2bx-(2ab-b^2)x^2-2ab^2*x^3+(ab)^2*x^4).

Formula

G.f.: (1-2x-6x^2)/(1-4x-8x^2-24x^3+36x^4); a(n)=4a(n-1)+8a(n-2)+24a(n-3)-36a(n-4).