cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A108484 a(n) = Sum_{k=0..floor(n/2)} binomial(2n-2k,2k) * 3^(n-k).

Original entry on oeis.org

1, 1, 4, 19, 55, 220, 793, 2845, 10480, 37963, 138259, 503608, 1831969, 6669865, 24276892, 88362451, 321640831, 1170726484, 4261339801, 15510894949, 56458080328, 205502135851, 748007984827, 2722677076336, 9910284168961
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Comments

In general, Sum_{k=0..floor(n/2)} C(2n-2k,2k)a^k*b^(n-k) has expansion (1-bx-abx^2)/(1-2bx-(2ab-b^2)x^2-2ab^2*x^3+(ab)^2*x^4).

Crossrefs

Formula

G.f.: (1-x-3x^2)/(1-2x-5x^2-6x^3+9x^4).
a(n) = 2a(n-1)+5a(n-2)+6a(n-3)-9a(n-4).
Showing 1-1 of 1 results.