cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108489 Expansion of 1/sqrt(1-2x-5x^2-6x^3+9x^4).

Original entry on oeis.org

1, 1, 4, 13, 37, 130, 427, 1441, 4954, 16987, 58843, 204610, 713893, 2500183, 8778478, 30898309, 108987427, 385136680, 1363252603, 4832572951, 17153677534, 60961916965, 216887253409, 772400234074, 2753261490919, 9822393082513
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Comments

In general, Sum_{k=0..n}, C(n-k,k)^2*a^k*b^(n-k) has expansion 1/sqrt(1-2bx-(2ab-b^2)x^2-2a*b^2*x^3+(ab)^2*x^4).

Crossrefs

Cf. A108484.

Programs

  • Mathematica
    Array[Sum[Binomial[# - k, k]^2*3^k, {k, 0, #}] &, 26, 0] (* Michael De Vlieger, Sep 10 2021 *)

Formula

a(n) = Sum_{k=0..n}, C(n-k, k)^2*3^k.
D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +5*(-n+1)*a(n-2) +3*(-2*n+3)*a(n-3) +9*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 20 2015