This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108502 #8 Nov 05 2020 15:07:28 %S A108502 1,2,2,2,2,3,2,3,2,3,2,5,2,3,3,4,2,4,2,5,3,3,2,7,2,3,3,5,2,6,2,5,3,3, %T A108502 3,7,2,3,3,7,2,6,2,5,4,3,2,10,2,4,3,5,2,6,3,7,3,3,2,11,2,3,4,6,3,6,2, %U A108502 5,3,6,2,11,2,3,4,5,3,6,2,10,3,3,2,11,3,3,3,7,2,9,3,5,3,3,3,14,2,4,4,7,2,6 %N A108502 Number of factorizations of 4*n into distinct even numbers. %H A108502 Alois P. Heinz, <a href="/A108502/b108502.txt">Table of n, a(n) for n = 1..10000</a> %e A108502 a(15)=3 because 15*4=60 can be factored as 60=30*2=10*6. %p A108502 with(numtheory): %p A108502 b:= proc(n, i) option remember; `if`(n<=i, 1, 0)+ %p A108502 add(`if`(d<=i and irem(d, 2)=0 and irem(n/d, 2)=0, %p A108502 b(n/d, min(d-1, i)), 0), d=divisors(n) minus {1, n}) %p A108502 end: %p A108502 a:= n-> b(4*n$2): %p A108502 seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 17 2015 %t A108502 b[n_, i_] := b[n, i] = If[n <= i, 1, 0] + Sum[If[d <= i && Mod[d, 2]==0 && Mod[n/d, 2]==0, b[n/d, Min[d-1, i]], 0], {d, Divisors[n][[2 ;; -2]]}]; %t A108502 a[n_] := b[4n, 4n]; %t A108502 Array[a, 100] (* _Jean-François Alcover_, Nov 05 2020, after _Alois P. Heinz_ *) %Y A108502 Cf. A045778, A108501, A108503. %K A108502 nonn %O A108502 1,2 %A A108502 _Christian G. Bower_, Jun 06 2005