cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108606 Semiprimes with prime sum of digits.

This page as a plain text file.
%I A108606 #28 Aug 23 2022 04:17:46
%S A108606 14,21,25,34,38,49,58,65,74,85,94,106,111,115,119,122,133,142,146,155,
%T A108606 166,201,203,205,209,214,218,221,247,254,265,274,278,287,289,298,302,
%U A108606 319,326,335,346,355,362,371,377,382,386,391,395,403,407,427,445,454
%N A108606 Semiprimes with prime sum of digits.
%C A108606 34 is the smallest term in common with A108605.
%H A108606 J.W.L. (Jan) Eerland, <a href="/A108606/b108606.txt">Table of n, a(n) for n = 1..10000</a>
%e A108606 34 = 2*17 (semiprime) and 2 + 17 = 19 is prime.
%t A108606 A108606=Select[Range[1000], Plus@@(Transpose[FactorInteger[ # ]])[[2]]==2&& PrimeQ[Plus@@IntegerDigits[ # ]]&]
%t A108606 DeleteCases[ParallelTable[If[PrimeOmega[n]==2&&PrimeQ[Total[IntegerDigits[n]]],n,a],{n,0,126181}],a] (* _J.W.L. (Jan) Eerland_, Dec 21 2021 *)
%o A108606 (PARI) select(isA108606(n)={bigomega(n)==2&&isprime(sumdigits(n))},[1..1000]) \\ _J.W.L. (Jan) Eerland_, Dec 23 2021
%o A108606 (Python)
%o A108606 from sympy import isprime, factorint
%o A108606 def ok(n): return isprime(sum(map(int, str(n)))) and sum(factorint(n).values()) == 2
%o A108606 print([k for k in range(455) if ok(k)]) # _Michael S. Branicky_, Aug 22 2022
%Y A108606 Cf. A001358 (semiprimes), A101605 (3-almost primes), A108605 (semiprimes with prime sum of factors), A108607 (intersection of A108605 and A108606).
%K A108606 nonn,base
%O A108606 1,1
%A A108606 _Zak Seidov_, Jun 12 2005