This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108617 #41 Feb 16 2025 08:32:58 %S A108617 0,1,1,1,2,1,2,3,3,2,3,5,6,5,3,5,8,11,11,8,5,8,13,19,22,19,13,8,13,21, %T A108617 32,41,41,32,21,13,21,34,53,73,82,73,53,34,21,34,55,87,126,155,155, %U A108617 126,87,55,34,55,89,142,213,281,310,281,213,142,89,55,89,144,231,355,494,591,591,494,355,231,144,89 %N A108617 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) for 0 < k < n, T(n,0) = T(n,n) = n-th Fibonacci number. %C A108617 Sum of n-th row = 2*A027934(n). - _Reinhard Zumkeller_, Oct 07 2012 %H A108617 Reinhard Zumkeller, <a href="/A108617/b108617.txt">Rows n = 0..120 of triangle, flattened</a> %H A108617 Hacéne Belbachir and László Szalay, <a href="http://siauliaims.su.lt/pdfai/2014/Belb_Szal_2014.pdf">On the Arithmetic Triangles</a>, Šiauliai Mathematical Seminar, Vol. 9 (17), 2014. See Fig. 1 p. 18. %H A108617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>. %H A108617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PascalsTriangle.html">Pascal's Triangle</a>. %H A108617 Wikipedia, <a href="http://www.wikipedia.org/wiki/Fibonacci_number">Fibonacci number</a>. %H A108617 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pascal's_triangle">Pascal's triangle</a>. %H A108617 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A108617 T(n,0) = T(n,n) = A000045(n); %F A108617 T(n,1) = T(n,n-1) = A000045(n+1) for n>0; %F A108617 T(n,2) = T(n,n-2) = A000045(n+2) - 2 = A001911(n-1) for n>1; %F A108617 Sum_{k=0..n} T(n,k) = 2*A027934(n-1) for n>0. %F A108617 Sum_{k=0..n} (-1)^k*T(n, k) = 2*((n+1 mod 2)*Fibonacci(n-2) + [n=0]). - _G. C. Greubel_, Oct 20 2023 %e A108617 Triangle begins: %e A108617 0; %e A108617 1, 1; %e A108617 1, 2, 1; %e A108617 2, 3, 3, 2; %e A108617 3, 5, 6, 5, 3; %e A108617 5, 8, 11, 11, 8, 5; %e A108617 8, 13, 19, 22, 19, 13, 8; %e A108617 13, 21, 32, 41, 41, 32, 21, 13; %e A108617 21, 34, 53, 73, 82, 73, 53, 34, 21; %e A108617 34, 55, 87, 126, 155, 155, 126, 87, 55, 34; %e A108617 55, 89, 142, 213, 281, 310, 281, 213, 142, 89, 55; %p A108617 A108617 := proc(n,k) option remember; %p A108617 if k = 0 or k=n then %p A108617 combinat[fibonacci](n) ; %p A108617 elif k <0 or k > n then %p A108617 0 ; %p A108617 else %p A108617 procname(n-1,k-1)+procname(n-1,k) ; %p A108617 end if; %p A108617 end proc: # _R. J. Mathar_, Oct 05 2012 %t A108617 a[1]:={0}; a[n_]:= a[n]= Join[{Fibonacci[#]}, Map[Total, Partition[a[#],2,1]], {Fibonacci[#]}]&[n-1]; Flatten[Map[a, Range[15]]] (* _Peter J. C. Moses_, Apr 11 2013 *) %o A108617 (Haskell) %o A108617 a108617 n k = a108617_tabl !! n !! k %o A108617 a108617_row n = a108617_tabl !! n %o A108617 a108617_tabl = [0] : iterate f [1,1] where %o A108617 f row@(u:v:_) = zipWith (+) ([v - u] ++ row) (row ++ [v - u]) %o A108617 -- _Reinhard Zumkeller_, Oct 07 2012 %o A108617 (Magma) %o A108617 function T(n,k) // T = A108617 %o A108617 if k eq 0 or k eq n then return Fibonacci(n); %o A108617 else return T(n-1,k-1) + T(n-1,k); %o A108617 end if; %o A108617 end function; %o A108617 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Oct 20 2023 %o A108617 (SageMath) %o A108617 def T(n,k): # T = A108617 %o A108617 if (k==0 or k==n): return fibonacci(n) %o A108617 else: return T(n-1,k-1) + T(n-1,k) %o A108617 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Oct 20 2023 %Y A108617 Cf. A007318, A074829, A108037. %Y A108617 T(2n,n) gives 2*A176085(n). %K A108617 nonn,easy,tabl %O A108617 0,5 %A A108617 _Reinhard Zumkeller_, Jun 12 2005