This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108644 #37 Nov 29 2023 17:19:56 %S A108644 1,3,2,7,4,5,13,8,6,10,21,14,9,11,17,31,22,15,12,18,26,43,32,23,16,19, %T A108644 27,37,57,44,33,24,20,28,38,50,73,58,45,34,25,29,39,51,65,91,74,59,46, %U A108644 35,30,40,52,66,82,111,92,75,60,47,36,41,53,67,83,101 %N A108644 Square array A(n,k) read by ascending antidiagonals: A(n,n) = n^2, if n>k: A(n,k) = n*(n-1) + k, if k>n: A(n,k) = n + (k-1)^2. %C A108644 The table gives all positive integers exactly once. %H A108644 G. C. Greubel, <a href="/A108644/b108644.txt">Antidiagonals n = 1..50, flattened</a> %H A108644 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A108644 From _G. C. Greubel_, Oct 18 2023: (Start) %F A108644 T(n, k) = A(n-k+1, k) (antidiagonal triangle). %F A108644 T(n, n) = A002522(n-1). %F A108644 T(2*n, n) = A005563(n). %F A108644 T(2*n-1, n) = A000290(n). %F A108644 T(2*n-2, n) = A002378(n-1), n >= 2. %F A108644 T(3*n, n) = A033954(n). %F A108644 Sum_{k=1..n} T(n, k) = A274248(n). (End) %F A108644 Let M be the upper left n X n submatrix of this array, then abs(det(M)) = A098557(n). - _Thomas Scheuerle_, Nov 11 2023 %e A108644 Array begins: %e A108644 1 2 5 10 17 26 37 ... %e A108644 3 4 6 11 18 27 38 ... %e A108644 7 8 9 12 19 28 39 ... %e A108644 13 14 15 16 20 29 40 ... %e A108644 21 22 23 24 25 30 41 ... %e A108644 31 32 33 34 35 36 42 ... %e A108644 43 44 45 46 47 48 49 ... %e A108644 ... %e A108644 Antidiagonal triangle begins as: %e A108644 1; %e A108644 3, 2; %e A108644 7, 4, 5; %e A108644 13, 8, 6, 10; %e A108644 21, 14, 9, 11, 17; %e A108644 31, 22, 15, 12, 18, 26; %e A108644 43, 32, 23, 16, 19, 27, 37; %e A108644 ... %t A108644 A[n_, k_]:= If[k<n, k +n*(n-1), If[k==n, n^2, n +(k-1)^2]]; %t A108644 A108644[n_, k_]:= A[n-k+1,k]; %t A108644 Table[A108644[n,k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Oct 18 2023 *) %o A108644 (PARI) A(i,j)=if (i==j, i^2, if (i>j, i*(i-1)+j, (j-1)^2+i)); %o A108644 matrix(7,7,n,k,A(n,k)) \\ _Michel Marcus_, Dec 30 2020 %o A108644 (Magma) %o A108644 A:= func< n,k | k lt n select k+n*(n-1) else k eq n select n^2 else n+(k-1)^2 >; %o A108644 A108644:= func< n,k | A(n-k+1,k) >; %o A108644 [A108644(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 18 2023 %o A108644 (SageMath) %o A108644 def A(n,k): %o A108644 if k<n: return k+n*(n-1) %o A108644 elif k==n: return n^2 %o A108644 else: return n+(k-1)^2 %o A108644 def A108644(n,k): return A(n-k+1,k) %o A108644 flatten([[A108644(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Oct 18 2023 %Y A108644 Cf. A002522 (1st row), A002061 (1st column), A000290 (diagonal). %Y A108644 Cf. A002378, A002522, A005563, A033954, A098557, A274248. %K A108644 nonn,tabl %O A108644 1,2 %A A108644 _Pierre CAMI_, Jun 27 2005