cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108645 a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n^2 + 6*n + 5)/720.

This page as a plain text file.
%I A108645 #17 Oct 19 2023 07:37:04
%S A108645 1,26,250,1435,5978,19992,56952,143550,328515,695266,1379378,2591953,
%T A108645 4650100,8015840,13344864,21546684,33857829,51929850,77934010,
%U A108645 114684647,165783310,235785880,330395000,456680250,623328615,840927906,1122285906
%N A108645 a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n^2 + 6*n + 5)/720.
%C A108645 Kekulé numbers for certain benzenoids.
%D A108645 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 21).
%H A108645 Harvey P. Dale, <a href="/A108645/b108645.txt">Table of n, a(n) for n = 0..1000</a>
%H A108645 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A108645 G.f.: (1+17*x+52*x^2+37*x^3+5*x^4)/(1-x)^9. - _Harvey P. Dale_, Sep 05 2016
%F A108645 E.g.f.: (1/6!)*(720 + 18000*x + 71640*x^2 + 91440*x^3 + 49050*x^4 + 12486*x^5 + 1565*x^6 + 92*x^7 + 2*x^8)*exp(x). - _G. C. Greubel_, Oct 19 2023
%p A108645 a:=(n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n^2+6*n+5)/720: seq(a(n),n=0..30);
%t A108645 Table[(n+1)(n+2)^2(n+3)^2(n+4)(2n^2+6n+5)/720,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,26,250,1435, 5978,19992,56952,143550,328515},30] (* _Harvey P. Dale_, Sep 05 2016 *)
%o A108645 (Magma) B:=Binomial; [(2*n^2+6*n+5)*B(n+4,4)*B(n+3,2)/15: n in [0..40]]; // _G. C. Greubel_, Oct 19 2023
%o A108645 (SageMath) b=binomial; [(2*n^2+6*n+5)*b(n+4,4)*b(n+3,2)/15 for n in range(41)] # _G. C. Greubel_, Oct 19 2023
%Y A108645 Cf. A108646, A108647, A108648, A108649, A108650.
%K A108645 nonn
%O A108645 0,2
%A A108645 _Emeric Deutsch_, Jun 13 2005