A108667 Triangle read by rows: T(n,k) = 9k*n + 14(n+k) + 20 (0 <= k <= n).
20, 34, 57, 48, 80, 112, 62, 103, 144, 185, 76, 126, 176, 226, 276, 90, 149, 208, 267, 326, 385, 104, 172, 240, 308, 376, 444, 512, 118, 195, 272, 349, 426, 503, 580, 657, 132, 218, 304, 390, 476, 562, 648, 734, 820, 146, 241, 336, 431, 526, 621, 716, 811
Offset: 0
Examples
Triangle begins: 20; 34,57; 48,80,112; 62,103,144,185;
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 102).
Crossrefs
Cf. A051872.
Programs
-
Maple
T:=proc(n,k) if k<=n then 9*k*n+14*(n+k)+20 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
Formula
G.f.: (20 - 6z - 3t*z + t^2*z^2 - 16t*z^2 - 4t^2*z^3)/((1-z)^2*(1-t*z)^3).
Comments