A108684 a(n) = (n+1)*(n+2)*(n+3)*(19*n^3 + 111*n^2 + 200*n + 120)/720.
1, 15, 93, 372, 1141, 2926, 6594, 13476, 25509, 45397, 76791, 124488, 194649, 295036, 435268, 627096, 884697, 1224987, 1667953, 2237004, 2959341, 3866346, 4993990, 6383260, 8080605, 10138401, 12615435, 15577408, 19097457, 23256696
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 10).
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Maple
a:=n->(n+1)*(n+2)*(n+3)*(19*n^3+111*n^2+200*n+120)/720: seq(a(n),n=0..33);
-
Mathematica
Table[(n + 1) (n + 2) (n + 3) (19 n^3 + 111 n^2 + 200 n + 120)/720, {n, 0, 29}] (* or *) CoefficientList[Series[(1 + 8 x + 9 x^2 + x^3)/(1 - x)^7, {x, 0, 29}], x] (* or *) Table[Sum[Binomial[(n + 1 - k) + 1, 2] Apply[Subtract, Map[Binomial[# + 2, 3] &, {n + 1, k}]], {k, 0, n}], {n, 0, 29}] (* Michael De Vlieger, Jun 08 2017 *)
Formula
G.f.: (1 + 8*x + 9*x^2 + x^3)/(1-x)^7.
Comments