This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108687 #27 Apr 22 2025 03:59:49 %S A108687 1,9,11,81,99,121,729,891,1089,1331,6561,8019,9801,11979,14641,59049, %T A108687 72171,88209,107811,131769,161051,531441,649539,793881,970299,1185921, %U A108687 1449459,1771561,4782969,5845851,7144929,8732691,10673289,13045131 %N A108687 Numbers of the form (9^i)*(11^j), with i, j >= 0. %H A108687 Reinhard Zumkeller, <a href="/A108687/b108687.txt">Table of n, a(n) for n = 1..10000</a> %F A108687 Sum_{n>=1} 1/a(n) = (9*11)/((9-1)*(11-1)) = 99/80. - _Amiram Eldar_, Sep 24 2020 %F A108687 a(n) ~ exp(sqrt(2*log(9)*log(11)*n)) / sqrt(99). - _Vaclav Kotesovec_, Sep 24 2020 %t A108687 f[upto_]:=With[{max9=Floor[Log[9,upto]],max11=Floor[Log[11,upto]]}, Select[Union[Times@@{9^First[#],11^Last[#]}&/@Tuples[{Range[0, max9], Range[0, max11]}]], #<=upto&]]; f[14000000] (* _Harvey P. Dale_, Mar 11 2011 *) %o A108687 (Haskell) %o A108687 import Data.Set (singleton, deleteFindMin, insert) %o A108687 a108687 n = a108687_list !! (n-1) %o A108687 a108687_list = f $ singleton (1,0,0) where %o A108687 f s = y : f (insert (9 * y, i + 1, j) $ insert (11 * y, i, j + 1) s') %o A108687 where ((y, i, j), s') = deleteFindMin s %o A108687 -- _Reinhard Zumkeller_, May 15 2015 %o A108687 (Python) %o A108687 from sympy import integer_log %o A108687 def A108687(n): %o A108687 def bisection(f,kmin=0,kmax=1): %o A108687 while f(kmax) > kmax: kmax <<= 1 %o A108687 kmin = kmax >> 1 %o A108687 while kmax-kmin > 1: %o A108687 kmid = kmax+kmin>>1 %o A108687 if f(kmid) <= kmid: %o A108687 kmax = kmid %o A108687 else: %o A108687 kmin = kmid %o A108687 return kmax %o A108687 def f(x): return n+x-sum(integer_log(x//11**i,9)[0]+1 for i in range(integer_log(x,11)[0]+1)) %o A108687 return bisection(f,n,n) # _Chai Wah Wu_, Mar 25 2025 %Y A108687 Subsequence of A003597. %Y A108687 Cf. A025633, A025634, A107788, A107764, A003596, A107988, A003598, A003599, A108090. %K A108687 nonn,easy %O A108687 1,2 %A A108687 Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005