This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108764 #25 Feb 16 2025 08:32:58 %S A108764 4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,65,69, %T A108764 77,82,85,87,91,93,94,95,115,118,119,121,123,133,141,142,143,145,155, %U A108764 161,169,177,187,203,205,209,213,217,221,235,247,253,287,289,295,299 %N A108764 Products of exactly two supersingular primes (A002267). %C A108764 There are exactly 15 supersingular primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 and 71 (A002267). The supersingular primes are exactly the set of primes that divide the group order of the Monster group. %C A108764 Peter Luschny's link shows how this sequence may be connected to Schinzel-Sierpinski conjecture and the Calkin-Wilf tree. %D A108764 E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. %D A108764 Ogg, A. P. "Modular Functions." In The Santa Cruz Conference on Finite Groups. Held at the University of California, Santa Cruz, Calif., 1979 (Ed. B. Cooperstein and G. Mason). Providence, RI: Amer. Math. Soc., pp. 521-532, 1980. %D A108764 Silverman, J. H. The Arithmetic of Elliptic Curves II. New York: Springer-Verlag, 1994. %H A108764 T. D. Noe, <a href="/A108764/b108764.txt">Table of n, a(n) for n = 1..120</a> %H A108764 N. Calkin and H. S. Wilf, <a href="http://www.math.upenn.edu/~wilf/website/recounting.pdf">Recounting the rationals</a>, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363. %H A108764 Matthew M. Conroy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/CONROY/conroy.html">A sequence related to a conjecture of Schinzel</a>, J. Integ. Seqs. Vol. 4 (2001), #01.1.7. %H A108764 J. H. Conway and S. P. Norton, <a href="http://blms.oxfordjournals.org/content/11/3/308.extract">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339. %H A108764 J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, <a href="http://neilsloane.com/doc/primary.html">The Primary Pretenders</a>, Acta Arith. 78 (1997), 307-313. %H A108764 P. D. T. A. Elliott, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002212722">The multiplicative group of rationals generated by the shifted primes. I.</a>, J. Reine Angew. Math. 463 (1995), 169-216. %H A108764 P. D. T. A. Elliott, <a href="http://dx.doi.org/10.1515/crll.2000.017">The multiplicative group of rationals generated by the shifted primes. II.</a> J. Reine Angew. Math. 519 (2000), 59-71. %H A108764 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SchinzelSierpinskiConjectureAndCalkinWilfTree">The Schinzel-Sierpinski conjecture and the Calkin-Wilf tree</a>. %H A108764 A. Schinzel and W. Sierpinski, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa4/aa432.pdf">Sur certaines hypotheses concernant les nombres premiers</a>, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259. %H A108764 Eric Weisstein et al., <a href="https://mathworld.wolfram.com/SupersingularPrime.html">Supersingular Prime.</a> %F A108764 {a(n)} = {p*q: p in A002267 and q in A002267}. %e A108764 1207 = 17 * 71, 3337 = 47 * 71. %t A108764 Union[ Times @@@ Tuples[{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}, 2]] (*_Robert G. Wilson v_, Feb 11 2011 *) %Y A108764 Cf. A001358, A002267. %K A108764 easy,fini,full,nonn %O A108764 1,1 %A A108764 _Jonathan Vos Post_, Jun 17 2005