This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108775 #17 Sep 18 2015 08:19:17 %S A108775 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1, %T A108775 1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,1,1,2,1,1, %U A108775 1,2,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,2,1,2,1,2,1 %N A108775 a(n) = floor(sigma(n)/n). %C A108775 The sequence is unbounded. - Vrabec %C A108775 First occurrence of k: 1,6,120,27720,..., which is A023199. - _Robert G. Wilson v_, Jun 28 2005 %C A108775 a(n) > 1 if n is perfect or abundant. a(n) = 2 if n is perfect or primitive abundant (see A091191). - _Alonso del Arte_, Feb 06 2012 %D A108775 W. Sierpinski, Elementary Theory of Numbers, 1987, p. 174 ff. %H A108775 Reinhard Zumkeller, <a href="/A108775/b108775.txt">Table of n, a(n) for n = 1..10000</a> %F A108775 a(n) = floor(A017665(n)/A017666(n)). - _Michel Marcus_, Sep 18 2015 %e A108775 a(6) = 2 because sigma(6)/6 = (1 + 2 + 3 + 6)/6 = 2. %t A108775 Table[ Floor[ DivisorSigma[1, n]/n], {n, 105}] (* _Robert G. Wilson v_, Jun 28 2005 *) %o A108775 (Haskell) %o A108775 a108775 n = div (a000203 n) n -- _Reinhard Zumkeller_, Mar 23 2013 %o A108775 (PARI) a(n) = sigma(n)\n; \\ _Michel Marcus_, Sep 18 2015 %Y A108775 Cf. A000203, A054024. %Y A108775 Cf. A017665, A017666. %K A108775 nonn %O A108775 1,6 %A A108775 _Franz Vrabec_, Jun 27 2005 %E A108775 More terms from _Robert G. Wilson v_, Jun 28 2005