A108786 Yet another version of the Catalan triangle A008315.
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002
Offset: 0
Examples
.......|...1 .......|.......1 .......|...1.......1 .......|.......2.......1 .......|...2.......3.......1 .......|.......5.......4.......1 .......|...5.......9.......5.......1 .......|......14......14.......6.......1 .......|..14......28......20.......7.......1 .......|......42......48......27.......8.......1
References
- J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
Crossrefs
Programs
-
Maple
A008315 := proc(n,k) binomial(n,k)-binomial(n,k-1) ; end: for n from 0 to 30 do for k from 0 to n/2 do printf("%d, ",A008315(n,k)) ; od: od: # R. J. Mathar, Feb 13 2008