This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108796 #37 Feb 10 2024 15:41:38 %S A108796 1,0,0,1,1,3,4,7,9,16,21,33,46,68,95,140,187,266,372,507,683,948,1256, %T A108796 1692,2263,3003,3955,5248,6824,8921,11669,15058,19413,25128,32149, %U A108796 41129,52578,66740,84696,107389,135310,170277,214386,268151,335261,418896,521204 %N A108796 Number of unordered pairs of partitions of n (into distinct parts) with empty intersection. %C A108796 Counted as orderless pairs since intersection is commutative. %H A108796 Vaclav Kotesovec <a href="/A108796/b108796.txt">Table of n, a(n) for n = 0..1050</a> (terms 0..700 from Alois P. Heinz) %F A108796 a(n) = ceiling(1/2 * [(x*y)^n] Product_{j>0} (1+x^j+y^j)). - _Alois P. Heinz_, Mar 31 2017 %F A108796 a(n) = ceiling(A365662(n)/2). - _Gus Wiseman_, Oct 07 2023 %e A108796 Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3). %e A108796 From _Gus Wiseman_, Oct 07 2023: (Start) %e A108796 The a(6) = 4 pairs are: %e A108796 ((6),(5,1)) %e A108796 ((6),(4,2)) %e A108796 ((6),(3,2,1)) %e A108796 ((5,1),(4,2)) %e A108796 (End) %t A108796 using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2 %t A108796 nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* _Vaclav Kotesovec_, Apr 07 2017 *) %t A108796 Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&],{2}],Intersection@@#=={}&]],{n,15}] (* _Gus Wiseman_, Oct 07 2023 *) %o A108796 (PARI) a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ _Andrew Howroyd_, Oct 10 2023 %Y A108796 Column k=2 of A258280. %Y A108796 Cf. A079122, A086737. %Y A108796 Main diagonal of A284593 times (1/2). %Y A108796 This is the strict case of A260669. %Y A108796 The ordered version is A365662 = strict case of A054440. %Y A108796 This is the disjoint case of A366132, with twins A366317. %Y A108796 A000041 counts integer partitions, strict A000009. %Y A108796 A002219 counts biquanimous partitions, strict A237258, ordered A064914. %Y A108796 Cf. A000124, A000712, A001255, A006827, A032302, A122768, A355389. %K A108796 nonn %O A108796 0,6 %A A108796 _Wouter Meeussen_, Jul 09 2005 %E A108796 Name edited by _Gus Wiseman_, Oct 10 2023 %E A108796 a(0)=1 prepended by _Alois P. Heinz_, Feb 09 2024