This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A108800 #27 Aug 10 2019 17:38:12 %S A108800 1,2,6,28,330,28960,216562364,5592326182940100 %N A108800 Number of nonisomorphic systems enumerated by A102895. %C A108800 Also the number of non-isomorphic sets of sets with {} that are closed under intersection. Also the number of non-isomorphic set-systems (without {}) covering n + 1 vertices and closed under intersection. - _Gus Wiseman_, Aug 05 2019 %H A108800 M. Habib and L. Nourine, <a href="https://doi.org/10.1016/j.disc.2004.11.010">The number of Moore families on n = 6</a>, Discrete Math., 294 (2005), 291-296. %F A108800 a(n > 0) = 2 * A108798(n). %e A108800 From _Gus Wiseman_, Aug 02 2019: (Start) %e A108800 Non-isomorphic representatives of the a(0) = 1 through a(3) = 28 sets of sets with {} that are closed under intersection: %e A108800 {} {} {} {} %e A108800 {}{1} {}{1} {}{1} %e A108800 {}{12} {}{12} %e A108800 {}{1}{2} {}{123} %e A108800 {}{2}{12} {}{1}{2} %e A108800 {}{1}{2}{12} {}{1}{23} %e A108800 {}{2}{12} %e A108800 {}{3}{123} %e A108800 {}{1}{2}{3} %e A108800 {}{23}{123} %e A108800 {}{1}{2}{12} %e A108800 {}{1}{3}{23} %e A108800 {}{2}{3}{123} %e A108800 {}{3}{13}{23} %e A108800 {}{1}{23}{123} %e A108800 {}{3}{23}{123} %e A108800 {}{1}{2}{3}{23} %e A108800 {}{1}{2}{3}{123} %e A108800 {}{2}{3}{13}{23} %e A108800 {}{1}{3}{23}{123} %e A108800 {}{2}{3}{23}{123} %e A108800 {}{3}{13}{23}{123} %e A108800 {}{1}{2}{3}{13}{23} %e A108800 {}{1}{2}{3}{23}{123} %e A108800 {}{2}{3}{13}{23}{123} %e A108800 {}{1}{2}{3}{12}{13}{23} %e A108800 {}{1}{2}{3}{13}{23}{123} %e A108800 {}{1}{2}{3}{12}{13}{23}{123} %e A108800 (End) %Y A108800 Except a(0) = 1, first differences of A193675. %Y A108800 The connected case (i.e., with maximum) is A108798. %Y A108800 The same for union instead of intersection is (also) A108798. %Y A108800 The labeled version is A102895. %Y A108800 The case also closed under union is A326898. %Y A108800 The covering case is A326883. %Y A108800 Cf. A001930, A102894, A102896, A102897, A193674, A326880, A326881. %K A108800 nonn,more %O A108800 0,2 %A A108800 _Don Knuth_, Jul 01 2005 %E A108800 a(6) added (using A193675) by _N. J. A. Sloane_, Aug 02 2011 %E A108800 Changed a(0) from 2 to 1 by _Gus Wiseman_, Aug 02 2019 %E A108800 a(7) added (using A108798) by _Andrew Howroyd_, Aug 10 2019